- •I. В урне 2 белых и 4 чёрных шара. Двое поочерёдно наугад вынимают по шару (без возвращения). С какой вероятностью первый вынет белый шар первым?
- •III. (Задача а.Н. Колмогорова, приводящая к логнормальному распределению). Найти плотность распределения новой нсв , когда старая св распределена нормально, т.Е. .
- •IV. Два игрока по очереди бросают уравновешенную игральную кость. Выигрывает тот, у кого очков больше. С какой вероятностью выиграет первый?
- •VII. Пять студентов наугад рассаживают за круглый стол. Какова вероятность, что определённая пара окажется рядом?
- •IX . Пусть у системы нсв совместная фр имеет вид, показанный значениями на рисунке.
- •X. Бросается две уравновешенные игральные кости. Какова вероятность, что на них выпадут различные числа?
- •XIII. Уравновешенная монета бросается раз. Какова вероятность выпадения нечётного числа гербов?
- •XVI. Четырёхтомное сочинение расположено на полке в произвольном порядке. Какова вероятность, что номера томов идут подряд?
- •XIX. Какова вероятность, что выбранное наугад целое число при возведении в квадрат даст число, оканчивающееся на 1 ?
- •XXI. Пусть некоторая система дсв со значениями имеет совместный ряд распределения , представленный в таблице:
- •XXII. На отрезок длины наугад ставится две точки. Какова вероятность, что из трёх получившихся частей отрезка можно построить треугольник?
- •XXIII. В лотерее разыгрывается 100 билетов, среди которых 10 – выигрышные. Студент купил 2 билета. Какова вероятность, что он выиграл хотя бы на один билет?
- •XXIV. Пусть дсв имеет ряд распределения , представленный в таблице.
- •XXV. Коэффициенты и квадратного уравнения выбираются наугад из сегмента . Какова вероятность, что корни этого уравнения будут действительными?
- •XXVIII. На отрезок (см. Рис. 10.1) наугад поставлены точки и (пусть левее ). Какова вероятность, что длина отрезка будет меньше длины отрезка ?
- •XXIX. В урну, содержащую 2 шара, опущен 1 белый шар; после чего из урны наудачу вынут 1 шар. Какова вероятность, что это будет белый шар, если равновозможен любой первоначальный состав урны?
- •XXX. (Распределение младшей порядковой статистики). Какую фр и плотность распределения имеет новая св , если старые нсв все одинаково и независимо распределены с фр и плотностью ?
- •XXXI. В студенческой лотерее на 100 билетов приходится 5 денежных и 5 вещевых выигрышей. Студент приобрёл 2 билета. Какова вероятность, что он выиграл и вещь и деньги?
- •XXXIV. В урне находится 3 белых и 4 чёрных шара. Из урны наугад выбирается 3 шара. Какова вероятность, что 2 из них будут чёрными, а 1 – белым?
- •XXXVII. Студент купил карточку Спортлото и наугад отметил 6 из 49-ти номеров. Какова вероятность, что он угадал 3 выигрышных номера?
- •XXXVIII. Пусть вероятность поражения цели при бомбометании с самолёта есть 0.35. И пусть независимо бросаются 10 бомб. Какова вероятность, что цель поразят ровно 3 (наивероятное число) бомбы?
- •XXXIX. (Расчёт точности стрельбы при круговом рассеянии, приводящий к распределению Рэлея). Для системы нормальных св
- •Xl. В лотерее разыгрывается 100 билетов, среди которых 10 – выигрышные. Студент купил 2 билета. Какова вероятность, что он ничего не выиграл?
- •Xlii. Астроном в благоприятную ночь наблюдает метеорный поток на определённом участке неба, регистрируя количество пролетевших метеоритов за каждые 15 минут.
- •Xliii. Студент пришёл на экзамен, зная лишь 20 вопросов из 25-ти. Преподаватель наугад дал 2 вопроса. Какова вероятность, что студент получил вопросы, которые он выучил?
- •Xliv. Какова вероятность, что при многократном независимом бросании правильной игральной кости первая шестёрка выпадет при 3-ем бросании?
- •Xlvi. В урне находится 7 шаров, среди которых 3 белых. Наугад вынимается 2 шара. Какова вероятность, что оба они белые?
- •Xlvii. Изделия некоторого производства содержат 10% брака. Какова вероятность, что среди трёх наугад взятых изделий одно окажется бракованным?
- •Xlix. В урне имеется 3 белых и 2 чёрных шара. Все шары наугад по одному вынимаются. Какова вероятность, что последним будет чёрный шар?
- •Lii. Какова вероятность того, что 3 определённые книги на полке будут стоять рядом, если наугад расставляется 10 книг?
- •Liv. (Закон арксинуса). Какими являются фр и плотность у новой св (где ), если старая нсв распределена равномерно в ? Нарисовать графики.
- •Lv. В ящике находится 10 карточек с различными номерами. Из ящика по очереди наугад вынимается с возвращением 3 карточки. Какова вероятность, что у них будут разные номера?
- •Lvii. (Распределение Коши). Какими являются фр и плотность у новой св (где , а – произвольная ), если старая нсв распределена равномерно в ? Нарисовать графики.
- •Lxxiii. В барабане револьвера 7 гнёзд и вставлено 5 патронов. Дважды барабан наугад прокручивается, и каждый раз нажимается курок. Какова вероятность, что выстрела не будет?
- •Lxxiv. Уравновешенная монета бросается 6 раз. Какова вероятность, что выпадет больше гербов, чем решек?
- •Lxxvi. Из букв разрезной азбуки составлено слово ананас. Ребёнок рассыпал эти буквы, а затем наугад их составил. Какова вероятность, что вновь получится исходное слово?
- •Lxxvii. На курсе 40 студентов – юношей. Какова (приближённо по Муавру – Лапласу) вероятность того, что хотя бы двое из них носят имя Александр, если частота встречи такого имени у юношей есть ?
- •Lxxix. Из букв разрезной азбуки составлено слово книга. Ребёнок рассыпал эти буквы, а затем наугад их составил. Какова вероятность, что вновь получится исходное слово?
- •Литература
Lxxix. Из букв разрезной азбуки составлено слово книга. Ребёнок рассыпал эти буквы, а затем наугад их составил. Какова вероятность, что вновь получится исходное слово?
Ответ:
Учитывая, что правильная расстановка букв единственна (в отличие от ответа на LXXVI), а ребёнок мог их составить в любом из 5! порядков, искомая вероятность по определению Бернулли – Лапласа есть:
.
LXXX. Вероятность сбить самолёт одиночным винтовочным выстрелом весьма мала и составляет порядка 0.004. Какова (приближённо по Пуассону) вероятность сбить самолёт при одновременной независимой стрельбе из 250-ти винтовок?
Ответ:
Обозначим искомую
вероятность через
,
а через
– вероятность получить
"успехов" за
опытов Бернулли; причём у нас вероятность
отдельного "успеха"
.
Тогда в терминах противоположного
события в задаче требуется вычислить:
.
Однако проблема в том, что из-за больших факториалов вычислять бернуллиеву вероятность непросто. Но здесь можно воспользоваться пуассоновским приближением для формулы Бернулли:
.
Учитывая,
что у нас
,
расчёт по формуле Пуассона для искомой
вероятности даёт:
.
LXXXI. Пусть старая
НСВ
имеет квадратичную ФР
при
,
оставаясь равной 0 при
и оставаясь равной 1 при
.
И пусть новая СВ
получается из старой в результате
операции усечения:
,
причём
при
и
при
.
Как в итоге выглядит ФР
новой СВ и каков тип СВ
?
Ответ:
Г
рафики
ФР старой СВ
и закона преобразования
старой СВ в новую показаны соответственно
на рис. 27.1 и рис. 27.2:
По смыслу ФР новой СВ определяется как:
/см.
рис. 27.1-2/=
.
В результате искомая ФР описывается формулой
и имеет график, показанный на рис. 27.3.
И
з
графика видно, что СВ
имеет смешанный дискретно - непрерывный
тип – поскольку её ФР совершает два
скачка в точках 0 и 1/2, а в остальных
точках непрерывна. При этом точки скачков
составляют дискретную часть спектра
с вероятностными массами 1/16 и 7/16.
Непрерывная же часть спектра
сосредоточена в отрезке (0,1/2), где
распределена вероятностная масса 8/16.
Следует отметить, что операция усечения старой НСВ всегда ведёт к образованию дискретной части спектра у новой СВ в точках концов усечения. При этом вероятности этих точек образуются как вероятностные массы хвостов распределения исходной НСВ.
Литература
Вентцель Е.С. Теория вероятностей, изд. 4-е, стереотип. – М.: Наука, 1969.
Заездный А.М. Основы расчётов по статистической радиотехнике. – М.: Связь, 1969.
Радюк Л.Е., Терпугов А.Ф. Теория вероятностей и случайных процессов. – Томск: Изд-во Томск. ун-та, 1988.
Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗов, изд. 11-е стереотип. – М.: Наука, 1967.
Вадзинский Р.Н. Справочник по вероятностным распределениям. – СПб.: Наука, 2001.
____________________________________________________________________Томский государственный университет, пр. Ленина, 36, факультет информатики
Тираж 100 экз.
