
- •Переключательные функции. Способы задания, основные свойства
- •Переключательные функции одного и двух аргументов
- •Основные законы алгебры логики основные законы алгебры логики
- •Функции Шеффера и Пирса.
- •9 Минимизация переключательных функций. Метод импликантных матриц.
- •Импликантная матрица
- •11. Минимизация переключательных функций. Метод диаграм Вейча.
- •12. Совершенная дизъюктивная и совершенная конъюктивная нормальная формы
- •13. Вхождение функции в функцию. Импликанты. Простые импликанты. Способ получения простых импликант.
- •15. Правила развертывания логических выражений ??? 16. Конституента
- •18. Второй метод получения минимальной конъюнктивной нормальной формы
- •19. Минимизация неполностью определенных переключательных функций
- •20. Графы
- •21. Теорема о реализуемости графов в трехмерном евклидовом пространстве ?
- •22. Теорема Понтрягина-Куратовского
- •[Править]Признаки непланарных графов
- •23.Основные типы графов
- •24. Эйлеровы графы. Условия существования цепи и цикла.
- •[Править]в неориентированном графе
- •[Править]в ориентированном графе
- •25. Матрицы смежностей вершин графов
- •28.Операции на графах. Декартово произведение
- •29. Операции на графах. Произведение.?
- •30.Композиция графов?
- •31. Операции на графах в матричной форме
- •32. Внутренние и внешние устойчивые множества вершин Внутренне устойчивое множество вершин графа
- •33. Теоремы эйлера о графах
- •34. Операции на графах объединение и пересечение
- •35. Связные графы. Основные понятия и определения. Компонента связности.
- •36. Графы-деревья . Свойства. Теорема а.Кэли
- •37. Гамильтонов граф
- •Необходимое условие
- •38,39. Транспортная сеть.
- •40. Теорема форда-фалкерсона, алгоритм
- •42. Теорема о числе различных цепей длины n в графах и орграфах
- •43. Теорема о максимальном числе ребер в графе с р вершинами и q компонентами связности
- •44. Разрез транспортной сети и его свойства
Функции Шеффера и Пирса.
Штрих Ше́ффера — бинарная логическая операция, булева функция над двумя переменными. Введена в рассмотрениеГенри Шеффером в 1913 г. (в отдельных источниках именуется как Пунктир Чулкова)
Штрих Шеффера, обычно обозначаемый |, задаётся следующей таблицей истинности:
X |
Y |
X|Y |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
Таким образом, высказывание X | Y означает, что X и Y несовместны, т.е. не являются истинными одновременно. От перемены мест операндов результат операции не изменяется.
Стре́лка Пи́рса — бинарная логическая операция, булева функция над двумя переменными. Введена в рассмотрениеЧарльзом Пирсом (Сharles Peirce) в 1880—1881 г.г.
Стрелка Пирса, обычно обозначаемая ↓, задаётся следующей таблицей истинности:
X |
Y |
X ↓ Y |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
Таким образом, высказывание «X ↓ Y» означает «ни X, ни Y». От перемены мест операндов результат операции не изменяется.
Стрелка Пирса, как и Штрих Шеффера, образует базис для пространства булевых функций от двух переменных. Это означает, что, используя только стрелку Пирса, можно построить все остальные логические операции, например:
9 Минимизация переключательных функций. Метод импликантных матриц.
Метод импликантных матриц
Этот метод позволяет достаточно просто осуществлять переход от сокращенной формы переключательной функции к тупиковым и минимальным формам. Рассмотрим пример. Требуется найти минимальные дизъюнктивные нормальные формы переключательной функции, совершенная форма которой определяется выражением
.
Построим для этой функции импликантную матрицу, представляющую собой таблицу, в вертикальные и горизонтальные входы которой записываются все конституенты единицы и все простые импликанты заданной функции соответственно (табл. 3.8).
Таблица 2.3.1.
Импликантная матрица
Простые импли-канты |
Конституенты единицы |
|||||
|
|
|
|
|
|
|
|
X |
X |
|
|
|
|
|
|
X |
X |
|
|
|
|
|
|
X |
X |
|
|
|
|
|
|
X |
X |
|
|
|
|
|
|
X |
X |
Для каждой импликанты найдем конституенты единицы, которые ею поглощаются, т. е. те конституенты, собственной частью которых является данная импликанта. Например, импликанта поглощает конституенты и , импликанта — конституенты и и т. д. Клетки импликантной матрицы, образованные пересечением строк с импликантами и колонок с поглощаемыми ими конституентами, отметим какими-либо символами..
Чтобы получить минимальную дизъюнктивную нормальную форму заданной функции, достаточно найти минимальное число импликант, которые совместно накрывают крестиками все колонки импликантной матрицы.
Из табл. 2.3.1 следует, что в минимальную форму обязательно должны войти импликанты и , так как только они накрывают крестиками первую и шестую колонки импликантной матрицы.
Кроме того, имлликанта накрывает вторую, а импликанта — пятую колонки. Поэтому остается накрыть только третью и четвертую колонки. Для этого можно выбрать пары импликант: и ; и или одну импликанту . Если выбрать указанные выше пары импликант, то импликанты и оказываются лишними, так как импликанта одна накрывает третью и четвертую колонки таблицы. Таким образом, выбрав импликанту , получим минимальную дизъюнктивную нормальную форму заданной функции.
,
которая совпадает с первой тупиковой формой. Если дополнительно к и выбрать импликанты и , то лишних импликант не оказывается, а полученное выражение
,
является второй тупиковой формой заданной функции.
10. метод испытания импликант
Одним из методов отыскания лишних импликант является метод испытания членов: чтобы испытать некоторый член функции, следует исключить его из Сокр ДНФ и подставить в оставшееся выражение такие значения аргументов, которые обращают исключенный член в единицу. Если при такой подстановке оставшееся выражение окажется тождественно равным единице, то испытуемый член является лишним.