
- •1.Механическое движение.
- •2.Система отсчета. Система отсчёта
- •3. Кинематика равномерного движения материальной точки. Материальная точка
- •1. Равнопеременное движение.
- •2. Скорость и ускорение.
- •3.Основное кинематическое уравнение для рпд.
- •4.Графики скорости и ускорения.
- •1.Движение тела по окружности с постоянной по модулю скорости.
- •1.Взаимодействие тел.
- •2.Принцип суперпозиции сил.
- •3.Законы динамики Ньютона.
- •1.Силы в природе.
- •2.Сила тяжести, упругости, трения.
- •1.Закон всемирного тяготения. Закон всемирного тяготения.
- •2. Гравитационная постоянная.
- •1.Вес тела.
- •3.Невесомость и перегрузки. Невесомость и перегрузка
- •1.Импульс тела.
- •2.Импульс силы.
- •3.Закон сохранения импульса реактивное движение. Закон сохранения импульса.
- •1.Работа и мощность.
- •2.Механическая энергия. Механическая энергия
- •3.Закон сохранения энергии.
- •2. Основные характеристики волны
- •Резка металла с помощью ультразвука
- •Модель идеального газа в mkt
Давно известно, что ультразвуковое излучение можно сделать узконаправленным. Французский физик Поль Ланжевен впервые заметил повреждающее действие ультразвукового излучения на живые организмы. Результаты его наблюдений, а также сведения о том, что ультразвуковые волны могут проникать сквозь мягкие ткани человеческого организма, привели к тому, что с начала 1930-х гг. возник большой интерес к проблеме применения ультразвука для терапии различных заболеваний. С применением ультразвука в медицине связано множество разных аспектов. Однако, при этом физика явления должна включать следующие процессы: распространение ультразвука в «биологической среде», такой как тело человека, взаимодействие ультразвука с компонентами этой среды и измерения и регистрация акустического излучения, как падающего на объект, так и возникающего в результате взаимодействия с ними.
Резка металла с помощью ультразвука
На обычных металлорежущих станках нельзя просверлить в металлической детали узкое отверстие сложной формы, например в виде пятиконечной звезды. С помощью ультразвука это возможно, магнитострикционный вибратор может просверлить отверстие любой формы. Ультразвуковое долото вполне заменяет фрезерный станок. При этом такое долото намного проще фрезерного станка и обрабатывать им металлические детали дешевле и быстрее, чем фрезерным станком.
Билет№14
Основные Положения Молекулярно-Кинетической Теории (Опытное Обоснование)
В основе молекулярно-кинетической теории строения вещества лежат три положения:
Все тела состоят из частиц (атомов, молекул, ионов и др.);
Частицы непрерывно хаотически движутся;
Частицы взаимодействуют друг с другом.
Первое положение подтверждают испарение жидкостей и твердых тел, получение фотографий отдельных крупных молекул и групп атомов, косвенные измерения масс и размеров молекул.
Капля нефти объемом 1,0 мм3 может образовать на поверхности воды пленку площадью 3,0 м2. Полагая, что эта пленка является монослоем и имеет толщину в одну молекулу, получаем диаметр молекулы
где М - молярная масса, NA- постоянная Авогадро.
Так как массы молекул очень малы, удобно использовать в расчетах не абсолютные значения масс, а относительные. По международному соглашению массы всех атомов и молекул сравнивают с 1/12 массы атома углерода (углеродная шкала атомных масс).
Относительной молекулярной (или атомной) массой вещества Мr называют отношение массы молекулы (или атома) m0 данного вещества к 1/12 массы атома углерода m0c:
Относительные атомные массы всех химических элементов точно определены. Складывая относительные атомные массы, можно вычислить относительную молекулярную массу:
Чем больше атомов и молекул содержится в макроскопическом теле, тем больше вещества содержится в нем. Число молекул в макроскопических телах огромно, поэтому удобно указывать не абсолютное число атомов или молекул, а относительное. Принято сравнивать число молекул или атомов в данном теле с числом атомов, содержащихся в углероде массой 12 г. Относительное число атомов или молекул в теле характеризует особая физическая величина - количество вещества.
Количеством вещества v называют отношение числа молекул N в данном теле, к числу атомов в 0,012 кг углерода:
Количество вещества измеряется в молях.
Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде массой 0,012 кг.
Моль - основная единица Международной системы (СИ). Рекомендуемые кратные и дольные единицы: кмоль, ммоль, мкмоль.
Постоянная Авогадро - число атомов, молекул (структурных элементов) в одном Моле вещества: NA= 6,02 • 1023 моль-1 ~ 6 • 1023 моль-1.
Наряду с относительной молекулярной массой Мr в физике и химии широко используется понятие "молярная масса". Молярной массой вещества называют массу вещества, взятого в количестве 1 моля, m - масса вещества.
Второе положение МКТ о непрерывном движении частиц подтверждают такие явления, как броуновское движение и диффузия.
Броуновское движение - беспорядочное движение малых частиц в жидкости или газе, происходящее под действием молекул окружающей среды.
Причина броуновского движения - тепловое движение молекул среды и отсутствие точной компенсации ударов, испытываемых частицей со стороны окружающих ее молекул. Удары молекул среды приводят частицу в беспорядочное движение: скорость ее меняется по величине и направлению. Вследствие теплового движения частиц наблюдается явление диффузии, которое характеризуется проникновением молекул одного вещества между молекулами другого вещества при их соприкосновении
3. Диффузия лат. diffusio — распространение, растекание, рассеивание, взаимодействие) — процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму[1]. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (против градиента концентрации)
Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов перемешиваются на границе соприкосновения. Важную роль диффузия частиц играет в физике плазмы.
Обычно под диффузией понимают процессы, сопровождающиеся переносом материи, однако иногда диффузионными называют также другие процессы переноса: теплопроводность, вязкое трение и т. п.
Скорость протекания диффузии зависит от многих факторов. Так, в случае металлического стержня тепловая диффузия проходит очень быстро. Если же стержень изготовлен из синтетического материала, тепловая диффузия протекает медленно. Диффузия молекул в общем случае протекает ещё медленнее. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным. Ещё медленнее происходит диффузия одного твёрдого вещества в другое. Например, если медь покрыть золотом, то будет происходить диффузия золота в медь, но при нормальных условиях (комнатная температура и атмосферное давление) золотосодержащий слой достигнет толщины в несколько микронов только через несколько тысяч лет.\
Билет№15
Попробуем получить нетривиальные результаты, используя уравнение Клайперона-Менделеева и основное уравнение МКТ.
Введем понятие средней кинетической энергии молекул:
(1)
Преобразуем основное уравнение МКТ с учетом формулы (1):
т.е.
основное уравнение МКТ запишем так
(2)
Воспользуемся уравнением К.-М. в таком виде:
(3)
Сравним уравнения (2) и (3) и получим, что
или
(4)
Мы выяснили, что от температуры зависит величина средней кинетической энергии молекул. Поэтому говорят, что температура - мера средней кинетической энергии молекул. Это утверждение мы доказали на для идеального газа, но оказывается оно справедливо и для других агрегатных сосятояний вещества.
Опыт Штерна — опыт, впервые проведённый немецким физиком Отто Штерном в 1920 году. Опыт явился одним из первых практических доказательств состоятельности молекулярно-кинетической теории строения вещества. В нём были непосредственно измерены скорости теплового движения молекул и подтверждено наличие распределения молекул газов по скоростям.
Для проведения опыта Штерном был подготовлен прибор, состоящий из двух цилиндров разного радиуса, ось которых совпадала и на ней располагалась платиновая проволока с нанесённым слоем серебра. В пространстве внутри цилиндров посредством непрерывной откачки воздуха поддерживалось достаточно низкое давление. При пропускании электрического тока через проволоку достигалась температура плавления серебра, из-за чего атомы начинали испаряться и летели к внутренней поверхности малого цилиндра равномерно и прямолинейно со скоростью v, соответствующей подаваемому на концы нити напряжению. Во внутреннем цилиндре была проделана узкая щель, через которую атомы могли беспрепятственно пролетать далее. Стенки цилиндров специально охлаждались, что способствовало оседанию попадающих на них атомов. В таком состоянии на внутренней поверхности большого цилиндра образовывалась достаточно чёткая узкая полоса серебряного налёта, расположенная прямо напротив щели малого цилиндра. Затем всю систему начинали вращать с некой достаточно большой угловой скоростью ω. При этом полоса налёта смещалась в сторону, противоположенную направлению вращения, и теряла чёткость. Измерив смещение s наиболее тёмной части полосы от её положения, когда система покоилась, Штерн определил время полёта, через которое нашёл скорость движения молекул:
,
где s — смещение полосы, l — расстояние между цилиндрами, а u — скорость движения точек внешнего цилиндра.