
- •Введение в строительную механику
- •1. Предмет строительной механики
- •2. Сооружения и их элементы
- •3. Расчетные схемы сооружений и их классификация
- •4. Механические свойства материалов. Основные гипотезы
- •5. Внешние и внутренние силы. Деформации и перемещения
- •Кинематический анализ сооружений
- •1. Степень свободы. Кинематические связи
- •2. Число степеней свободы стержневой системы
- •3. Способы образования неизменяемых систем
- •4. Понятие о мгновенно изменяемых системах
- •Методы расчета статически определимых систем на постоянную нагрузку
- •1. Определение опорных реакций
- •2. Внутренние усилия стержневой системы
- •3. Методы определения внутренних усилий
- •3.1. Метод простых сечений
- •3.2. Метод совместных сечений
- •3.3. Метод вырезания узла
- •3.4. Метод замены связей
- •Методы расчета статИчески определимых систем на постоянную нагрузку (продолжение)
- •4. Расчет ферм
- •5. Расчет разрезных балок
- •6. Расчет трехшарнирных систем
- •Расчет статически определимых систем на подвижную нагрузку
- •1. Методы расчета сооружений на подвижную нагрузку
- •2. Построение линий влияния усилий простой балки
- •1) Линии влияния опорных реакций
- •2) Линии влияния поперечной силы и момента
- •3. Построение лв при узловой передаче нагрузки
- •4. Определение усилий по лв
- •5. Построение лв усилий фермы
- •Определение перемещений
- •1. Понятие о перемещениях
- •2. Действительные работы внешних и внутренних сил. Потенциальная энергия
- •3. Возможные перемещения. Возможные работы внешних и внутренних сил
- •4. Интеграл Мора. Определение перемещений
- •Расчет статически неопределимых систем методом сил
- •1. Понятие о статически неопределимых системах
- •2. Выбор основной системы
- •3. Сущность метода сил
- •4. Определение коэффициентов канонических уравнений
- •Расчет статически неопределимых систем методом сил (продолжение)
- •5. Проверка правильности коэффициентов
- •6. Определение внутренних усилий
- •7. Алгоритм метода сил
- •8. Определение перемещений статически неопределимых систем
- •9. Расчет симметричных рам
- •9. Группировка неизвестных
- •Расчет пространственных систем
- •1. Внутренние усилия пространственных систем
- •2. Опоры пространственных систем и их реакции
- •3. Кинематический анализ пространственных систем
- •4. Расчет пространственных ферм
- •5. Определение перемещений пространственных систем
- •6. Расчет пространственных рам методом сил
Л е к ц и я 1
Введение в строительную механику
1. Предмет строительной механики
Единый объект, построенный (сооруженный) человеком, называется сооружением. Когда речь идет о внутреннем строении сооружения как системы элементов, его называют системой.
Сооружения необходимы для удовлетворения жизненных потребностей людей и улучшения качества их жизни. Они должны быть удобными, прочными, устойчивыми и безопасными.
Строительство сооружений – вид древнейшего занятия людей и древнее искусство. Результаты многих археологических раскопок, проведенных в различных частях мира, сохранившиеся до наших дней древние сооружения и здания являются доказательством этого. Их совершенство и красота, даже с точки зрения современных знаний, говорят об искусстве и большом опыте древних строителей.
Вопросами расчета сооружений занимается специальная наука строительная механика, которую часто называют механикой сооружений. Считается, что строительная механика возникла сравнительно недавно, после выхода в свет в 1638 году сочинения великого итальянского ученого Галилео Галилея «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению …».
Строительная механика является частью общей механики. В XIX веке, после бурного начала строительства железных дорог, мостов, больших кораблей, плотин, различных промышленных сооружений, строительная механика стала самостоятельной наукой. А в XX веке в результате развития методов расчета и компьютерных технологий строительная механика поднялась на современный высокий уровень.
Строительная механика – наука о принципах и методах расчета сооружений на прочность, жесткость и устойчивость.
Строительная механика является и теоретической, и прикладной наукой. С одной стороны, она разрабатывает теоретические основы методов расчета, а с другой стороны − является инструментом расчета, так как решает важные практические задачи, связанные с прочностью, жесткостью и устойчивостью сооружений..
Воздействие нагрузок приводит как к деформированию отдельных элементов, так и самого сооружения в целом. Расчетом и теоретической оценкой результатов их воздействия занимается механика деформированного твердого тела. Частью этой науки является прикладная механика (сопротивление материалов), занимающаяся расчетом простейших сооружений или их отдельных элементов. Другая ее часть – строительная механика уже позволяет рассчитывать разные и весьма сложные многоэлементные сооружения.
Для правильного расчета сооружений следует правильно применять общие законы механики, основные соотношения, учитывающие механические свойства материала, условия взаимодействия элементов, частей и основания сооружения. На этой базе формируются расчетная схема сооружения в виде механической системы и ее математическая модель как система уравнений.
Чем подробнее изучаются внутреннее строение сооружения, действующая на него нагрузка и особенности материала, тем сложнее становится его математическая модель. На следующей схеме (рис. 1.1) показаны основные факторы, влияющие на особенности расчета сооружения.
Рис. 1.1
Обычно задачи строительной механики решаются в линейной постановке. Но при больших деформациях или использовании неупругих материалов ставятся и решаются нелинейные задачи.
В строительной механике большое место занимают статические и динамические задачи. Если в статике сооружений внешняя нагрузка постоянна и элементы и части системы находятся в равновесии, то в динамике сооружений рассматривается движение системы под воздействием переменных динамических нагрузок.
Строительная механика быстро развивается. Ещё недавно, в первой половине XX века для расчета сооружений использовались только простейшие математические модели. Но в 60-70 годы, когда начали широко внедряться компьютеры, стали применяться более сложные модели. Поэтому стало возможным проектирование, расчет и строительство сложных современных сооружений из новейших материалов.