
- •Ионообменные технологии
- •Содержание
- •Глава 3. Электроионитные процессы разделения и точной очистки веществ 81
- •Введение
- •Глава 1. Теоретические основы ионообменных процессов
- •1.1. Иониты. Классификация. Ионообменная емкость
- •1.1.1. Классификация ионитов
- •1.1.2. Ионообменная емкость
- •1.1.3. Методы определения обменной емкости
- •1.1.4 Способы выражения состава фаз
- •1.2. Кинетика ионного обмена
- •1.2.1. Пленочная кинетика
- •1.2.2. Гелевая кинетика
- •1.3. Ионообменное равновесие
- •1.3.1. Основные понятия
- •1.3.2. Изотермы сорбции
- •1.3.3. Методы изображения изотерм сорбции
- •1.3.4. Концентрационные константы ионообменного равновесия
- •1.3.5. Термодинамическая константа ионообменного равновесия
- •1.4. Термодинамика и кинетика разделительных процессов в системе ионит-раствор
- •Глава 2. Водоподготовка и деионизация растворов методами ионного обмена
- •2.1. Применение ионитов в процессах водоподготовки
- •2.1.1. Современное отечественное водоподготовительное оборудование
- •2.1.2. Развитие методов водоподготовки за рубежом
- •2.1.3. Технологическое и экологическое совершенствование водоподготовительных установок
- •2.1.4. Производство систем водоподготовки с применением мембран
- •2.1.5. Современные высокоэффективные коагулянты
- •2.1.6. Повышение эффективности реагентной обработки воды на водоподготовительных станциях России
- •2.1.7. Применение ионообменных смол при водоподготовке
- •Продукция фирмы «Пьюролайт Интернэшнл Лимитед» (Великобритания).
- •2.2. Деионизация растворов методом электродиализа с ионообменными мембранами
- •2.2.1. Примеры промышленных установок опреснения сточных вод
- •Глава 3. Электроионитные процессы разделения и точной очистки веществ
- •3.1. Разделение изотопов и ионов с близкими свойствами в обменных процессах с электрохимическим обращением потоков фаз
- •3.2. Разделение изотопов электроионитными методами
- •3.3. Разделение изотопов в системе ионит-раствор при наложении электрического поля
- •3.4. Разделение изотопических ионов при электродиализе с применением ионитовых мембран
- •Литература
Глава 2. Водоподготовка и деионизация растворов методами ионного обмена
2.1. Применение ионитов в процессах водоподготовки
Вода является самым распространенным материалом, применяемым почти во всех отраслях промышленности. Это растворитель различных веществ, среда для протекания разнообразных химических реакций, составная часть многих технических и бытовых продуктов, охлаждающее и нагревающие вещество для деталей машин и аппаратов, промышленных агрегатов и отопительных систем. В системах городского водоснабжения огромные количества воды предназначаются для обеспечения населения питьевой водой и других бытовых нужд, а также в значительных количествах для промышленных целей.
Непосредственное использование природных вод для промышленных и бытовых нужд является в большинстве случаев неприемлемым. Так, многие производства (текстильное, кожевенное, спиртоводочное и т. д.) требуют мягкой воды, т.е. не содержащей солей кальция и магния; в бумажной промышленности особенно примесью воды считаются соли железа, вызывающие пятна на бумаге. В охлаждающей воде не желательно присутствие микроорганизмов, которые приводят к зарастанию микрофлорой и водорослями омываемые водой поверхностей. Питьевая вода должна быть бесцветной, без запаха, не содержать вредные для здоровья веществ и болезнетворных микроорганизмов. В настоящее время насчитывается более 300 различных видов производств, требующих ту или иную предварительную обработку природной воды. Особенно высокие требования к потребляемой воде предъявляет теплоэнергетическое производство.
Продуктами теплоэнергетического производства является:
– электрическая энергия;
– тепло, отдаваемое в виде горячей воды в отопительных или открытых сетях;
– пар, используемый для различных технологических нужд соседними предприятиями;
– иногда вода для питья и хозяйственных надобностей в районах, лишенных природной пресной воды.
Наиболее высокие требования к качеству воды предъявляются в основном энергетическом цикле, так как надежность и экономичность работы оборудования ТЭС определяются многими факторами и в значительной степени содержанием примесей в рабочем теле, т.е. в воде и водяном паре.
Однако, несмотря на то, что на большинстве тепловых электростанциях для подпитки котлов используется вода высокого качества, в процессе работы теплоэнергетического оборудования возникают проблемы, обусловленные коррозией конструкционных материалов и образованием отложений на теплопередающих поверхностях. Их наличие снижает коэффициент теплопередачи, увеличивает сопротивление тракта и уменьшает экономичность работы. Для оборудования, работающего под давлением и при высоких температурах, это может привести к пережогу труб и возникновению аварийных ситуаций. Кроме того, сбои в работе оборудования могут вызвать коррозионные свищи и присосы охлаждающей или нагревающей среды в рабочую.
Вследствие образования накипи увеличивается расход топлива. Его значение изменяется в зависимости от ее толщины. Так при увеличении толщины накипи с 0,3…0,4 до 6…7 мм расход топлива возрастает с 1…3 до 8…10%. Подобные эффекты резко снижают экономичность производства и даже могут привести к внеплановым остановкам данного производства, что не допустимо, учитывая специфику предприятия.