
- •14. Активные элементы имс (диоды, диффузионные и полевые транзисторы)
- •15. Пассивные элементы имс. Особенности конструкции резисторов и конденсаторов полупроводниковых и гибридных микросхем. Резистивные элементы полупроводниковых имс. Пленочные и диффузионные резисторы.
- •Конденсаторы и индуктивные элементы в микроэлектронике.
- •17. Особенности структуры н-п-н бп транзисторов имс. Виды изоляции элементов биполярных имс. Влияние общей подложки на работу биполярных транзисторов имс.
- •Диэлектрическая изоляция элементов биполярных имс. Имс с комбинированной изоляцией.
- •Вах характеристики мдп транзисторов с коротким и длинным каналом. Сравнительный анализ.
- •Основные проблемы миниатюризации мдп транзисторов. Выбор материала подзатворного диэлектрика.
- •Конструктивные особенности субмикронных транзисторов ldd структуры и их влияние на эффекты короткого канала.
- •20. Понятие функциональной электроники. Принцип действия основных приборов пьезо- и акустоэлектроники. Приборы на основе поверхностно-акустических волн. Акустоэлектрические усилители.
17. Особенности структуры н-п-н бп транзисторов имс. Виды изоляции элементов биполярных имс. Влияние общей подложки на работу биполярных транзисторов имс.
Биполярный транзистор n-p-n типа является ключевым элементом полупроводниковых микросхем. Остальные элементы микросхемы выбираются и конструируются таким образом, чтобы они совмещались с основной структурой. Их изготавливают одновременно с созданием n-p-n транзистора, поэтому конструкция и технология изготовления транзисторов также должна обеспечивать возможность одновременного создания и других элементов (диодов, резисторов, конденсаторов и т. д) на основе полупроводниковых слоев, образованных при формировании эмиттерной, базовой или коллекторной областей транзистора. Таким образом, выбор физической структуры транзистора однозначно определяет все основные электрические параметры микросхемы.
Транзисторы с изоляцией на основе n-p перехода. Данный способ изоляции получил наибольшее распространение при изготовлении микросхем малой степени интеграции. Поскольку обратный ток изолирующего перехода мал, обеспечивается удовлетворительная изоляция транзистора от подложки и других элементов кристалла микросхемы. Области, окруженные со всех сторон изолирующим переходом, называют карманами. В них размещают не только биполярные транзисторы, но и другие элементы микросхемы. Обычно в каждом кармане формируют один элемент, но в некоторых случаях размещают несколько биполярных транзисторов, у которых согласно принципиальной электрической схеме соединены коллекторы.
1 – изолирующая область, 2 – эпитаксиальный слой, 3 – скрытый слой, 4 – базовая область, 5 –
эмиттерная область, 6 – коллекторная приконтактная область
К подложке в периферийной части кристалла микросхемы создают омический контакт (на рисунке не показан). При использовании микросхемы на этот контакт подают напряжение, при котором изолирующий переход всегда смещен в обратном направлении.
В структуре дискретного транзистора отсутствуют изолирующие р+-области, а контактная n+-область и вывод коллектора расположены снизу. Поэтому ряд параметров рассмотренного транзистора хуже, чем у дискретного: выше сопротивление коллекторной области, имеется ток утечки в подложку, ниже граничная частота и быстродействие из-за влияния барьерной емкости изолирующего n-р перехода. Основное достоинство метода изоляции n-р переходом – простота технологии формирования изолирующих областей р+-типа.
В структуре транзистора, изолированного n-р переходом, помимо основного транзистора существует паразитный р-п-р транзистор. Его эмиттером является базовый слой основного транзистора, базой – коллекторная область со скрытым слоем, а коллектором является подложка.
Диэлектрическая изоляция элементов биполярных имс. Имс с комбинированной изоляцией.
Наряду с биполярными транзисторами, изолированными n-р переходом, применяют биполярные транзисторы с диэлектрической изоляцией. Основные отличия структуры такого транзистора состоят в том, что транзистор размещают в кармане, изолированном со всех сторон от подложки из поликристаллического кремния тонким диэлектрическим слоем диоксида кремния. Качество такой изоляции значительно выше, так как токи утечки диэлектрика на много порядков меньше, чем у n-р перехода при обратном напряжении.
Однако биполярные микросхемы с диэлектрической изоляцией не получили широкого применения вследствие сложной технологии создания карманов и малой степени интеграции. Их достоинством является повышенная радиационная стойкость. У эпитаксиально-планарных транзисторов токи утечки изолирующих n-р переходов резко возрастают при воздействии ионизирующего излучения, вызывающего генерацию большого числа неосновных носителей. Ток утечки диэлектрика при этом остается пренебрежимо малым. Уменьшаются и токи утечки коллекторных n-р переходов, так как основная масса неосновных носителей генерируется за пределами карманов и не может достичь этих переходов.
Основным методом изоляции элементов современных биполярных микросхем является метод комбинированной изоляции, сочетающий изоляцию диэлектриком (диоксидом кремния) и n-р переходом, смещенным в обратном направлении.
В этом случае отдельные элементы отделены друг от друга областями диоксида кремния, образующего карманы, в каждом из которых размещена структура n+-n типа, изолированная снизу n+-р переходом. Главное достоинство изопланарного транзистора по сравнению с эпитаксиально-планарным состоит в том, что при одинаковой площади эмиттерных переходов общая площадь изопланарного транзистора (с учетом площади изолирующих областей) меньше почти на порядок. Поэтому на основе изопланарных транзисторов можно создавать БИС и СБИС. Для предотвращения появления каналов n-типа под изолирующими областями создают противоканальные области р+-типа с повышенной концентрацией акцепторов, при которой для типичных значений плотности положительного поверхностного заряда формирование инверсного слоя исключается, так как концентрация поступивших к поверхности электронов оказывается ниже концентрации дырок. Скрытый n+-слой в коллекторе изопланарного транзистора необходим для подсоединения к коллектору коллекторной контактной области. Он выполняет ту же функцию, что и в эпитаксиально-планарном транзисторе. Изопланарный транзистор по сравнению с эпитаксиально-планарным имеет лучшие импульсные и частотные параметры. Поскольку при одинаковых площадях эмиттерных переходов сравниваемых транзисторов в изопланарном транзисторе значительно уменьшены площади коллекторного и изолирующего переходов, а следовательно, пропорционально снижены и барьерные емкости указанных переходов.
18. Конструктивные особенности активных элементов полупроводниковых микросхем на основе полевых транзисторов. Основные проблемв миниатюризации МДП транзисторов: субмикронные транзисторы с поликремниевыми затворами. Особенности транзисторов LDD структуры.
МДП–транзисторы имеют существенные преимущества перед биполярными по конструкции (размеры и занимаемая ими площадь относительно невелики, отсутствует необходимость их изоляции) и электрофизическим параметрам (низкий уровень шумов, устойчивость к перегрузкам по току, высокое входное сопротивление и помехоустойчивость, малая мощность рассеивания, низкая стоимость).
МДП–транзистор может быть основным и единственным элементом МДП–микросхем. Он может выполнять функции активных приборов (ключевой транзистор в инверторах, усилительный транзистор), так и пассивных элементов (нагрузочный транзистор в инверторе, конденсатор в элементе памяти). Поэтому при проектировании МДП–микросхем можно обходиться только одним элементом – МДП–транзистором, конструктивные размеры которого и схема включения будут завесить от выполняемой функции. Это обстоятельство дает существенный выигрыш в степени интеграции.
В технологии КМОП используются полевые транзисторы с изолированным затвором с каналами разной проводимости. Отличительной особенностью схем КМОП по сравнению с биполярными технологиями (ТТЛ, ЭСЛ и др.) является очень малое энергопотребление в статическом режиме (в большинстве случаев можно считать, что энергия потребляется только во время переключения состояний). Отличительной особенностью структуры КМОП по сравнению с другими МОП-структурами (N-МОП, P-МОП) является наличие как n-, так и p-канальных полевых транзисторов; как следствие, КМОП-схемы обладают более высоким быстродействием и меньшим энергопотреблением, однако при этом характеризуются более сложным технологическим процессом изготовления и меньшей плотностью упаковки.
Подавляющее большинство современных логических микросхем, в том числе, процессоров, используют схемотехнику КМОП.
1 – металлизация, 2 – охранное кольцо n+-типа, 3 – охранное кольцо р+-типа, 4 – р-карман
В КМДП–структурах, подобных представленной на рис. 20.5 возможно проявление негативных эффектов, вызванных близостью друг к другу p– и n–канальных приборов, которые вместе могут образовывать сквозные p–n–p–n– или n–p–n–p–структуры. Данные последовательности областей ведут себя как тиристоры, которые обычно срабатывают от бросков тока во входной или выходной цепях. Раз открывшись, паразитная p–n–p–n–структура остается в этом состоянии вплоть до выключения питания (эффект «защелкивания»). Для решения проблемы защелкивания КМДП–микросхем можно использовать изолирующие карманы для каждого типа транзисторов.
По мере уменьшения длины канала МОП-транзистора свойства последнего начинают резко отличаться от свойств обычных длинноканильных приборов.Эти отклонения - так называемые короткоканальные эффекты - обусловлены существенно двумерным характером распределения электрических полей в активной области и сравнительно высокими абсолютными значениями напряженности полей.
Если при неизменной концентрации легирующей примеси в подложке сокращать длину канала прибора, в конце концов она станет величиной порядка толщины обедненных слоев p-n-переходов стока и истока. При этом распределение потенциала в канале будет равным образом определяться поперечным полем Ех, обусловленным напряжениями на затворе и подложке, и продольным полем Еy, инициированным напряжением смещения стока транзистора. Иными словами, распределение потенциала в таком короткоканальном приборе имеет двумерный характер, и для его описания уже нельзя использовать приближение плавного канала, которое предполагает, что Ех»Еу. Двумерный характер распределения потенциала существенно изменяет подпороговый участок характеристики прибора, обуславливает нежелательную зависимость порогового напряжения от длины канала и напряжений смещения на электродах, уменьшает выходное сопротивление, препятствуя отсечке канала.