Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пример зачетной работы.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
195.78 Кб
Скачать

4.5. Оценка достоверности дискриминантного анализа

Как уже говорилось, данные разбивают случайным образом на две подвыборки. Анализируемую часть выборки используют для вычисления дискриминантной функции, а проверочную – для построения классификационной матрицы. Дискриминантные веса, определенные анализируемой выборкой, умножают на значения независимых переменных в проверочной выборке, чтобы получить дискриминантные показатели для случаев в этой выборке. Затем случаи распределяют по группам, исходя из дискриминантных оказателей и соответствующего правила принятия решения. Например, при дискриминантном анализе двух групп случай может быть отнесен к группе с самым близким по значению центроидом. Затем, сложив элементы, лежащие на диагонали матрицы, и разделив полученную сумму на общее количество случаев, можно определить коэффициент результативности (hit ratio) или процент верно классифицированных случаев.

Полезно сравнить процент случаев, верно классифицированных с помощью дискриминантного анализа, с процентом случаев, который можно получить случайным образом. Для равных по размеру групп процент случайной классификации равен частному от деления единицы на количество групп. Превысит ли и насколько количество верно классифицированных случаев их случайное количество? Здесь нет общепринятого подхода, хотя некоторые авторы считают, что точность классификации, достигнутая с помощью дискриминантного анализа, должна быть, по крайней мере, на 25% выше, чем точность, которую можно достичь случайным образом.

Большинство программ для выполнения дискриминантного анализа также определяют

классификационную матрицу, исходя из анализируемой выборки. Поскольку программы учитывают даже случайные вариации в данных, то полученные результаты всегда точнее, чем классификация данных на основе проверочной выборки.

5. Использование в специализированных программах

В SPSS процедуру DISCRIMINANT используют для выполнения дискриминантного анализа. Это общая программа для дискриминантного анализа для двух групп или множественного дискриминантного анализа. Кроме того, с ее помощью можно выполнить прямой или пошаговый метод.

В программе SAS для выполнения дискриминантного анализа для двух групп или множественного дискриминантного анализа можно использовать процедуру DISCRIM. Если допущение о многомерном нормальном распределении не выполняется, то можно использоватьпроцедуру NEIGHBOR. В этой процедуре для классификации наблюдений используют непараметрическое правило "ближайших соседей".

Программа CANDISC выполняет канонический дискриминантный анализ и связана с анализом основных компонентов и канонической корреляцией. Процедуру STEPDISC можно использовать для выполнения пошагового дискриминантного анализа.

В программном пакете BMDP для выполнения пошагового дискриминантного анализа можно использовать программу Р7М. Но она не дает нормированные коэффициенты дискриминантной функции.

В Minitab дискриминантный анализ можно выполнить с помощью функции Stats -> Multivariate -> Discrimmate Analysis. Она позволяет вычислить как линейный, так и квадратный дискриминантный анализ при разбиении (классификации) наблюдений на две или больше групп. Дискриминантный анализ недоступен в Excel (версия 7.0).