
- •Оглавление
- •1 Явление ядерного распада как основа ядерной энергетики
- •1.1 Из каких частиц состоит ядро атома, какие у них свойства – масса, заряд
- •1.2 Назвать 3 основных вида радиоактивных излучений и дать характеристики (заряд, масса, проникающая способность) образующих их частиц.
- •1.3 Закон радиоактивного распада. Период полураспада.
- •1.4 Что называется естественной радиоактивностью, показать и объяснить на примерах
- •1.5 Цепная реакция деления ядра. Критическая масса.
- •1.6 Принцип работы ядерного реактора
- •1.7 Дефект массы. Ядерные и термоядерные реакции
- •2. Тепловые машины и тепловые насосы различных видов. Методы повышения кпд двс в современном автомобилестроении
- •2.1 Первый и второй законы термодинамики
- •2.2 Тепловой двигатель, кпд, примеры
- •2.3 Цикл Карно
- •2.4 Тепловой насос, холодильный и отопительный коэффициенты.
- •2.5 Типы тепловых насосов и области их практического применения
- •2.6. Способы увеличения кпд промышленных тепловых двигателей
- •3. Эффект Пельтье. Термоэлектрические преобразователи. Новые применение, перспективы использования
- •3.1 Эффект Пельтье
- •3.2. Эффект Зеебека
- •3.2 Уравнение теплового баланса термоэлектрического теплового насоса
- •3.3 Устройство и основные характеристики термоэлектрический модуля (тэм)
- •3.4 Преимущества и недостатки термоэлектрического охлаждения
- •3.5 Основные области применения термоэлектрического охлаждения тэм. Перспективы.
- •3.6 Термоэлектрический генератор (тэг). Конструкция, параметры.
- •3.7 Основные области применения тэг.
- •4. Изобретение транзистора как революционный этап развития электроники. Основные положения физики полупроводников. Эволюция твердотельной электроники за последние 20 лет
- •4.1 Дать объяснение понятию полупроводник и показать в чем состоит уникальность свойств полупроводников с точки зрения электроники
- •4.2. Назвать три основные энергетические зоны в полупроводниках. Объяснить их отличительные свойства с точки зрения характера движения электронов.
- •4.3. Понятие собственного полупроводника. Зависимость концентрации носителей от температуры.
- •4.4. Что такое легированный (примесный) полупроводник. Объяснить понятие n и p типов проводимости.
- •4.5 Чем обусловлено появление в области p-n перехода Объемного Пространственного Заряда (опз). Динамика опз при подаче на p-n переход внешнего электрического смещения.
- •4.6 Дать качественное описание Вольт-Амперной Характеристики полупроводникового диода.
- •4.7. Как устроены биполярный и полевой транзисторы. Основное назначение транзистора
- •4.8 Перечислите основные элементы полупроводниковой техники и кратко объясните их назначение
- •4.9. Высокочастотные hemt транзисторы
- •4.10. Виды Интегральных микросхем. Примеры. Закона Мура.
- •4.11. Основные технологические этапы производства интегральных микросхем
- •5. Современные методы хранения информации. Открытие эффекта гигантского магнетосопротивления – революционный этап в развитии магнитной записи данных
- •5.1 В чем заключен принцип магнитной записи данных
- •5.2 Что такое эффект Холла
- •5.3 Что такое обычное магнетосопротивление и каков порядок его величины
- •5.4 В чем заключено огромное практическое значение эффекта Гигантского магнетосопротивления
- •5.5. Назовите основные элементы современного магнитного накопителя данных (‘жесткого диска”)
- •6.1 Как рождается квант света в полупроводниковых приборах.
- •6.2 В чем разница между прямозонными и непрямозонными полупроводниками. Приведите примеры тех и других полупроводников
- •6.3 Принцип работы светодиода
- •6.4 Определение спонтанного и вынужденного излучений
- •6.5. Что такое инверсная заселенность уровней
- •6.6 Что такое накачка (лазера) и какие виды накачек вы знаете
- •1.2.1 Накачка электронным пучком
- •1.2.2 Накачка электрическим разрядом
- •1.2.2.2 Накачка быстрым поперечным электрическим разрядом
- •2.2.3 Накачка электрическим разрядом с предионизацией электронным пучком
- •1.2.2.4 Накачка двойным электрическим разрядом
- •6.7 Принцип работы полупроводникового лазера. Пороговый ток
- •6.8.Виды полупроводниковых лазеров – лазеры на гетерорструктурах, квантовых ямах и квантовых точках.
- •6.9.Области применения п.П. Лазеров и светодиодов
- •6.10.Какой эффект лежит в основе передачи света по оптоволокну. Устройство, виды и параметры современных оптических волокон
- •6.11. Что такое когерентное оптическое излучение.
6.6 Что такое накачка (лазера) и какие виды накачек вы знаете
Это Искусственный перенос Электронов в атоме на высокие уровни- желательно, чтобы на них электрон долго сидел, а потом падение электрона на нижний уровень с испусканием света опред длиной волны света, так как расстояния фиксировано между уровнями и зависит от материала
1.2.1 Накачка электронным пучком
При электронном возбуждении пучок высокоэнергетических электронов обладает энергией от 300 кэВ до 1 МэВ и выше. Формирование электронного пучка производится отдельной электронной пушкой, а сам пучок вводится в активный объем лазера, заполненный газовой смесью, через тонкий слой фольги, разделяющий вакуумный объем электронной пушки и рабочий объем лазера, давление в котором обычно превышает атмосферное. Длительность импульсов возбуждения обычно составляет несколько десятков наносекунд, а плотность тока электронного пучка от нескольких десятков до нескольких сотен ампер на квадратный сантиметр. При данном методе возбуждения удалось обеспечить генерацию на большинстве из перечисленных выше активных сред: KrF*, ArF*, XeCl*, XeF*.
Рисунок 7.Накачка электронным пучком.
1.2.2 Накачка электрическим разрядом
При использовании электроразрядного способа накачки эксимерных лазеров необходимо обеспечить предионизацию активной среды.
Предионизация используется для предотвращения дугового разряда и обычно достигается излучающими в УФ диапазоне искровыми разрядами, пробегающими параллельно оси трубки. Поскольку глубина проникновения УФ излучения в газовую смесь ограничена, для больших установок иногда применяют предионизацию рентгеновским излучением.
Рисунок 8. Накачка электрическим разрядом.
1.2.2.2 Накачка быстрым поперечным электрическим разрядом
Более простым в технической реализации является электроразрядный способ накачки эксимерных лазеров. В этом случае для получения возбужденных квазимолекул применяется быстрый поперечный разряд. Такой термин применим потому, что длительность импульса возбуждения выбирается меньше времени установления стримерного разряда и накачка активной среды аналогична накачке пучком электронов, но вводимым в рабочий объем не извне, а образующимся в нем самом. При электроразрядном способе накачки объем активной области не превышает десятых долей литра, так как разряд с большой плотностью тока при сохранении высокой электронной температуры тока реализовать в больших объемах не удается.
В качестве генераторов импульсов накачки в рассматриваемых лазерах используются формирующие линии, заряжаемые до напряжения в несколько десятков кВ и разряжающиеся через активную лазерную среду за времена от нескольких единиц до нескольких десятков нс.
В некоторых конструкциях предусматривается введение дополнительного третьего электрода, устанавливаемого вблизи от анода. Возникающий в этом случае между третьим электродом и анодом микроразряд играет роль предионизатора основного электронного разряда.
2.2.3 Накачка электрическим разрядом с предионизацией электронным пучком
Перспективным способом накачки эксимерных лазеров является также комбинированный способ - электрическим разрядом и электронным пучком, используемым для предионизации.
При накачке активной среды электрическим разрядом с предионизацией последнего электронным пучком требуется два источника накачки - электронный ускоритель и источник импульсного высоковольтного напряжения. Но большая доля энергии накачки в этом случае приходится на электрический разряд, что позволяет использовать для предионизации относительно маломощные электронные ускорители.
Рисунок 13. Лазер с разрядом, стабилизированным электронным пучком