
- •Оглавление
- •1 Явление ядерного распада как основа ядерной энергетики
- •1.1 Из каких частиц состоит ядро атома, какие у них свойства – масса, заряд
- •1.2 Назвать 3 основных вида радиоактивных излучений и дать характеристики (заряд, масса, проникающая способность) образующих их частиц.
- •1.3 Закон радиоактивного распада. Период полураспада.
- •1.4 Что называется естественной радиоактивностью, показать и объяснить на примерах
- •1.5 Цепная реакция деления ядра. Критическая масса.
- •1.6 Принцип работы ядерного реактора
- •1.7 Дефект массы. Ядерные и термоядерные реакции
- •2. Тепловые машины и тепловые насосы различных видов. Методы повышения кпд двс в современном автомобилестроении
- •2.1 Первый и второй законы термодинамики
- •2.2 Тепловой двигатель, кпд, примеры
- •2.3 Цикл Карно
- •2.4 Тепловой насос, холодильный и отопительный коэффициенты.
- •2.5 Типы тепловых насосов и области их практического применения
- •2.6. Способы увеличения кпд промышленных тепловых двигателей
- •3. Эффект Пельтье. Термоэлектрические преобразователи. Новые применение, перспективы использования
- •3.1 Эффект Пельтье
- •3.2. Эффект Зеебека
- •3.2 Уравнение теплового баланса термоэлектрического теплового насоса
- •3.3 Устройство и основные характеристики термоэлектрический модуля (тэм)
- •3.4 Преимущества и недостатки термоэлектрического охлаждения
- •3.5 Основные области применения термоэлектрического охлаждения тэм. Перспективы.
- •3.6 Термоэлектрический генератор (тэг). Конструкция, параметры.
- •3.7 Основные области применения тэг.
- •4. Изобретение транзистора как революционный этап развития электроники. Основные положения физики полупроводников. Эволюция твердотельной электроники за последние 20 лет
- •4.1 Дать объяснение понятию полупроводник и показать в чем состоит уникальность свойств полупроводников с точки зрения электроники
- •4.2. Назвать три основные энергетические зоны в полупроводниках. Объяснить их отличительные свойства с точки зрения характера движения электронов.
- •4.3. Понятие собственного полупроводника. Зависимость концентрации носителей от температуры.
- •4.4. Что такое легированный (примесный) полупроводник. Объяснить понятие n и p типов проводимости.
- •4.5 Чем обусловлено появление в области p-n перехода Объемного Пространственного Заряда (опз). Динамика опз при подаче на p-n переход внешнего электрического смещения.
- •4.6 Дать качественное описание Вольт-Амперной Характеристики полупроводникового диода.
- •4.7. Как устроены биполярный и полевой транзисторы. Основное назначение транзистора
- •4.8 Перечислите основные элементы полупроводниковой техники и кратко объясните их назначение
- •4.9. Высокочастотные hemt транзисторы
- •4.10. Виды Интегральных микросхем. Примеры. Закона Мура.
- •4.11. Основные технологические этапы производства интегральных микросхем
- •5. Современные методы хранения информации. Открытие эффекта гигантского магнетосопротивления – революционный этап в развитии магнитной записи данных
- •5.1 В чем заключен принцип магнитной записи данных
- •5.2 Что такое эффект Холла
- •5.3 Что такое обычное магнетосопротивление и каков порядок его величины
- •5.4 В чем заключено огромное практическое значение эффекта Гигантского магнетосопротивления
- •5.5. Назовите основные элементы современного магнитного накопителя данных (‘жесткого диска”)
- •6.1 Как рождается квант света в полупроводниковых приборах.
- •6.2 В чем разница между прямозонными и непрямозонными полупроводниками. Приведите примеры тех и других полупроводников
- •6.3 Принцип работы светодиода
- •6.4 Определение спонтанного и вынужденного излучений
- •6.5. Что такое инверсная заселенность уровней
- •6.6 Что такое накачка (лазера) и какие виды накачек вы знаете
- •1.2.1 Накачка электронным пучком
- •1.2.2 Накачка электрическим разрядом
- •1.2.2.2 Накачка быстрым поперечным электрическим разрядом
- •2.2.3 Накачка электрическим разрядом с предионизацией электронным пучком
- •1.2.2.4 Накачка двойным электрическим разрядом
- •6.7 Принцип работы полупроводникового лазера. Пороговый ток
- •6.8.Виды полупроводниковых лазеров – лазеры на гетерорструктурах, квантовых ямах и квантовых точках.
- •6.9.Области применения п.П. Лазеров и светодиодов
- •6.10.Какой эффект лежит в основе передачи света по оптоволокну. Устройство, виды и параметры современных оптических волокон
- •6.11. Что такое когерентное оптическое излучение.
5.1 В чем заключен принцип магнитной записи данных
Магнитный принцип записи и считывания информации. В накопителях на гибких магнитных дисках (НГМД) и накопителях на жестких магнитных дисках (НЖМД), или винчестерах, в основу записи информации положено намагничивание ферромагнетиков в магнитном поле, хранение информации основывается на сохранении намагниченности, а считывание информации базируется на явлении электромагнитной индукции.
В процессе записи информации на гибкие и жесткие магнитные диски головка дисковода с сердечником из магнито-мягкого материала (малая остаточная намагниченность) перемещается вдоль магнитного слоя магнитожесткого носителя (большая остаточная намагниченность). На магнитную головку поступают последовательности электрических импульсов (последовательности логических единиц и нулей), которые создают в головке магнитное поле. В результате последовательно намагничиваются (логическая единица) или не намагничиваются (логический нуль) элементы поверхности носителя.
В отсутствие сильных магнитных полей и высоких температур элементы носителя могут сохранять свою намагниченность в течение долгого времени (лет и десятилетий).
При считывании информации при движении магнитной головки над поверхностью носителя намагниченные участки носителя вызывают в ней импульсы тока (явление электромагнитной индукции). Последовательности таких импульсов передаются по магистрали в оперативную память компьютера.
5.2 Что такое эффект Холла
Американский
ученый Э.Холл обнаружил, что в проводнике,
помещенном в магнитное поле, возникает
разность потенциалов (поперечная) в
направлении, перпендикулярном вектору
магнитной индукции B и току I, вследствие
действия силы Лоренца на заряды,
движущиеся в этом проводнике.
Эффект Холла
Опыт показывает, что поперечная разность потенциалов пропорциональна плотности тока j, магнитной индукции и расстоянию d между электродами:
U = RdjB
(R - постоянная Холла, зависящая от рода вещества)
Постоянная Холла зависит от концентрации электронов
R = 1/(ne)
При движении электрического заряда в магнитном поле на него воздействует отклоняющая сила. Именно на этом принципе основана работа таких экспериментальных установок, как синхрофазотрон, широко использующихся в исследованиях в области физики элементарных частиц: в них заряженные частицы оказываются пойманными в тороидальную (в форме бублика) магнитную ловушку и летают по кругу внутри неё. В малых масштабах этот эффект используется в устройстве микроволновой печи — в ней электроны, циркулируя в магнитном поле, производят сверхвысокочастотное излучение, разогревающее пищу.
Представьте, что на столе перед вами лежит кусок проводящей проволоки, а магнитное поле направлено перпендикулярно плоскости крышки стола. Если по проволоке пропустить ток, магнитное поле заставит заряды внутри провода отклоняться в одну сторону (вправо или влево от направления тока, в зависимости от ориентации магнитного поля и полярности зарядов). Смещаясь от направления прямолинейного движения внутри проводника, заряды будут скапливаться в приграничной зоне, пока силы взаимного электростатического отталкивания между ними, возникающие в силу закона Кулона, не уравновесят отклоняющую силу воздействия магнитного поля на ток. После этого ток снова потечёт прямолинейно, однако на проводнике возникнет разность электрических потенциалов в плоскости, перпендикулярной как направлению тока, так и направлению силовых линий магнитного поля, вызванная перераспределением электрических зарядов в плоскости сечения проводника, а величина этой разности потенциалов будет пропорциональна силе тока и напряженности магнитного поля.
Первым поперечное электрическое напряжение, возникающее под воздействием внешнего магнитного поля, по вышеописанной схеме измерил в 1879 году Эдвин Холл. Он осознал, что направление вектора напряжения будет зависеть от того, какие заряды — отрицательные или положительные — являются носителем тока. И, в результате проведённых опытов, Холл первым в мире наглядно продемонстрировал, что электрический ток в металлах создаётся направленным движением отрицательно заряженных электронов. А до этого опыта учёные сомневались и относительно полярности зарядов-носителей тока, и относительно того, воздействует ли магнитное поле на заряженные частицы внутри проводника или на саму неподвижную структуру проводника.