
- •Оглавление
- •1 Явление ядерного распада как основа ядерной энергетики
- •1.1 Из каких частиц состоит ядро атома, какие у них свойства – масса, заряд
- •1.2 Назвать 3 основных вида радиоактивных излучений и дать характеристики (заряд, масса, проникающая способность) образующих их частиц.
- •1.3 Закон радиоактивного распада. Период полураспада.
- •1.4 Что называется естественной радиоактивностью, показать и объяснить на примерах
- •1.5 Цепная реакция деления ядра. Критическая масса.
- •1.6 Принцип работы ядерного реактора
- •1.7 Дефект массы. Ядерные и термоядерные реакции
- •2. Тепловые машины и тепловые насосы различных видов. Методы повышения кпд двс в современном автомобилестроении
- •2.1 Первый и второй законы термодинамики
- •2.2 Тепловой двигатель, кпд, примеры
- •2.3 Цикл Карно
- •2.4 Тепловой насос, холодильный и отопительный коэффициенты.
- •2.5 Типы тепловых насосов и области их практического применения
- •2.6. Способы увеличения кпд промышленных тепловых двигателей
- •3. Эффект Пельтье. Термоэлектрические преобразователи. Новые применение, перспективы использования
- •3.1 Эффект Пельтье
- •3.2. Эффект Зеебека
- •3.2 Уравнение теплового баланса термоэлектрического теплового насоса
- •3.3 Устройство и основные характеристики термоэлектрический модуля (тэм)
- •3.4 Преимущества и недостатки термоэлектрического охлаждения
- •3.5 Основные области применения термоэлектрического охлаждения тэм. Перспективы.
- •3.6 Термоэлектрический генератор (тэг). Конструкция, параметры.
- •3.7 Основные области применения тэг.
- •4. Изобретение транзистора как революционный этап развития электроники. Основные положения физики полупроводников. Эволюция твердотельной электроники за последние 20 лет
- •4.1 Дать объяснение понятию полупроводник и показать в чем состоит уникальность свойств полупроводников с точки зрения электроники
- •4.2. Назвать три основные энергетические зоны в полупроводниках. Объяснить их отличительные свойства с точки зрения характера движения электронов.
- •4.3. Понятие собственного полупроводника. Зависимость концентрации носителей от температуры.
- •4.4. Что такое легированный (примесный) полупроводник. Объяснить понятие n и p типов проводимости.
- •4.5 Чем обусловлено появление в области p-n перехода Объемного Пространственного Заряда (опз). Динамика опз при подаче на p-n переход внешнего электрического смещения.
- •4.6 Дать качественное описание Вольт-Амперной Характеристики полупроводникового диода.
- •4.7. Как устроены биполярный и полевой транзисторы. Основное назначение транзистора
- •4.8 Перечислите основные элементы полупроводниковой техники и кратко объясните их назначение
- •4.9. Высокочастотные hemt транзисторы
- •4.10. Виды Интегральных микросхем. Примеры. Закона Мура.
- •4.11. Основные технологические этапы производства интегральных микросхем
- •5. Современные методы хранения информации. Открытие эффекта гигантского магнетосопротивления – революционный этап в развитии магнитной записи данных
- •5.1 В чем заключен принцип магнитной записи данных
- •5.2 Что такое эффект Холла
- •5.3 Что такое обычное магнетосопротивление и каков порядок его величины
- •5.4 В чем заключено огромное практическое значение эффекта Гигантского магнетосопротивления
- •5.5. Назовите основные элементы современного магнитного накопителя данных (‘жесткого диска”)
- •6.1 Как рождается квант света в полупроводниковых приборах.
- •6.2 В чем разница между прямозонными и непрямозонными полупроводниками. Приведите примеры тех и других полупроводников
- •6.3 Принцип работы светодиода
- •6.4 Определение спонтанного и вынужденного излучений
- •6.5. Что такое инверсная заселенность уровней
- •6.6 Что такое накачка (лазера) и какие виды накачек вы знаете
- •1.2.1 Накачка электронным пучком
- •1.2.2 Накачка электрическим разрядом
- •1.2.2.2 Накачка быстрым поперечным электрическим разрядом
- •2.2.3 Накачка электрическим разрядом с предионизацией электронным пучком
- •1.2.2.4 Накачка двойным электрическим разрядом
- •6.7 Принцип работы полупроводникового лазера. Пороговый ток
- •6.8.Виды полупроводниковых лазеров – лазеры на гетерорструктурах, квантовых ямах и квантовых точках.
- •6.9.Области применения п.П. Лазеров и светодиодов
- •6.10.Какой эффект лежит в основе передачи света по оптоволокну. Устройство, виды и параметры современных оптических волокон
- •6.11. Что такое когерентное оптическое излучение.
4.5 Чем обусловлено появление в области p-n перехода Объемного Пространственного Заряда (опз). Динамика опз при подаче на p-n переход внешнего электрического смещения.
p-n-Перехо́д (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому.
Прежде всего, рассмотрим два образца полупроводника с электронной и дырочной электропроводностями (рис. 1.6, а). Напомним, что в дырочном полупроводнике присутствуют в равном количестве подвижные положительные дырки и неподвижные отрицательные ионы. На рис. 1.6,а дырки обозначены знаками «плюс», а отрицательные ионы - знаками «минус», заключенными в кружки. Для нашего рисунка концентрация примеси в электронном полупроводнике выбрана в 2 раза меньше, чем в дырочном. Аналогично обозначениям зарядов в дырочном полупроводнике в электронном полупроводнике электроны обозначены знаками «минус», а положительные ионы - со знаками «плюс», заключенными в кружки. Поскольку NA = 2NД, то заряды в дырочном полупроводнике нарисованы в 2 раза чаще, чем в электронном.
Теперь представим, что рассмотренные нами два образца являются просто областями единого кристалла полупроводника (рис. 1.6, б). Тогда по закону диффузии электроны из области n будут перемещаться в область р, а дырки, наоборот, - из области р в область n. Встречаясь на границе р и п областей, дырки и электроны рекомбинируют. Следовательно, в этой пограничной области значительно уменьшается концентрация носителей заряда и обнажаются некомпенсированные заряды неподвижных ионов. Со стороны области обнажаются положительные заряды доноров, а со стороны области р-отрицательные заряды акцепторов. Область некомпенсированных неподвижных зарядов и есть собственно область р-п перехода. Ее часто называют обедненным, истощенным слоем, или i-областью, имея ввиду резко сниженную концентрацию подвижных носителей заряда. Иногда эту область называют запорным слоем электронно-дырочного перехода.
Отметим, что р-п переход в целом должен быть электронейтральным, т.е. отрицательный заряд левой части и положительный заряд правой части должны быть одинаковы. Поскольку в рассматриваемом нами случае NA = 2NД (несимметричный переход), протяженность областей расположения заряд оказывается разной: одну треть i-области занимают акцепторы, а две трети доноры. Таким образом, большая часть обедненной области сосредоточивается в слаболегированном (высокоумном) слое.
В реальных р-п переходах концентрации доноров и акцепторов отличаются на несколько порядков. В таких несимметричных переходах практически весь обедненный слой сосредоточен в слаболегированной части. Ширина обедненного слоя (i-области) в равновесном состоянии l0 (см. рис. 1.6, б) является важным параметром р-п перехода. Другим, не менее важным параметром равновесного состояния является высота потенциального барьера (контактная разность потенциалов) ∆φ0. Этот параметр показан на зонной энергетической диаграмме р-п перехода, изображенной на рис. 1.7 (где εF - уровень Ферми).( Уровень Ферми — энергетический уровень, вероятность заполнения которого равна 0,5 при температурах, отличных от температуры абсолютного нуля.)
Потенциальный барьер образуется электрическим полем пространственного заряда обедненного слоя. При отсутствии внешнего поля (равновесное состояние) уровень Ферми является общим для всего объема полупроводника и расположен в запрещенной зоне. Поскольку в полупроводнике п-типа уровень Ферми смещен вверх относительно середины запрещенной зоны, а в полупроводнике р-типа вниз, то разрешенные зоны дырочной области должны располагаться на более высоких энергиях, чем разрешенные зоны электронной энергии. Следовательно, в обедненном слое диаграмма энергетических зон искривляется. Заметим, что в i-области уровень Ферми проходит вблизи середины запрещенной зоны.
Электрическое поле электронно-дырочного перехода, представляемое на рис. 1.7 потенциальным барьером, препятствует прохождению электронов из области р-типа в область п-типа и дырок в обратном направлении. Более строго: дрейфовые составляющие тока равны диффузионным. С некоторым приближением можно считать, что в равновесном состоянии р-п перехода его внутреннее электрическое поле компенсирует процесс диффузии носителей заряда, в результате чего ток через р-п переход не протекает. Анализируя рис. 1.7, следует помнить, что электроны в зоне проводимости стремятся занять уровни минимальной энергии, а дырки в валентной зоне - максимальной энергии.
Если к р-п переходу подключить внешний источник напряжения, то нарушится условие равновесия и потечет ток. При этом должна измениться высота потенциального барьера и соответственно ширина р-п перехода. Рассмотрим сначала прямое смещение р-п перехода (рис. 1,8). В этом случае внешнее напряжение U приложено в прямом направлении, т. е. знаком «плюс» к области р-типа.Высота потенциального барьера ∆φ при этом снижается:
и ширина р-п перехода уменьшается при прямом смещении. Уменьшение высоты потенциального барьера приводит к снижению электрического поля, препятствующего диффузии носителей заряда. Дырки из области р-типа начинают переходить в область n-типа, а электроны, наоборот, из области р-типа в область n-типа. В каждой области появляются избыточные концентрации неосновных носителей. Процесс нагнетания неосновных носителей заряда в какую-либо область полупроводника называется инжекцией.
Таким образом,
увеличение обратного смещения приводит
к расширению р-п перехода.
Поскольку несимметричный п
При приложении U в обратном направлении концентрации неосновных носителей на границах i-области уменьшаются по сравнению с равновесными значениями. Такой процесс отсоса носителей называется экстракцией.
|