
Завдання 5
Обчислити амплітудний спектр періодичного сигналу (ω = 2π/Ta) якщо відомі:
- період дискретизації Та = 0.1 с (для № вар.15-30 Та = 0.4 с);
- частота дискретизації ƒa = 10 Гц; (для № вар.15-30 ƒa = 2.5 Гц)
- сумарний час спостереження NTa = 1с ; (для № вар.15-30 NTa= 4с);
- кількість вибірок N = 10,
а послідовність вибірок сигналу складається з таких значень:
Таблиця 4
№ вар. |
Вихідні дані |
||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
1 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
б |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
1.2 |
3.0 |
-4.0 |
-0.4 |
2.7 |
0.3 |
-0.6 |
0.4 |
0.1 |
|
2 |
N |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
1.8 |
1.6 |
-1.3 |
-0.4 |
0.8 |
-0.1 |
-0.2 |
0.1 |
0 |
|
3 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-6.0 |
-14.0 |
-4.0 |
0.2 |
5.0 |
0.8 |
-2.0 |
-0.4 |
-0.1 |
|
4 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-3.0 |
-7.0 |
-2.0 |
0.3 |
2.0 |
0.2 |
-0.8 |
-0.2 |
0 |
|
5 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
-1.0 |
-5.0 |
-12.0 |
-2.0 |
2.0 |
5.0 |
1.0 |
-0.4 |
-0.4 |
-0.1 |
|
Продовження табл.4 |
|||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
6 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
12 |
3 |
-4 |
-0.4 |
2.7 |
0.3 |
-0.6 |
0.4 |
0.1 |
|
7 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
1.1 |
3.0 |
-4.5 |
-0.4 |
2.8 |
0.3 |
-0.5 |
0.4 |
0.2 |
|
8 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
-1.1 |
-5.3 |
-11.0 |
-1.0 |
3.0 |
6.0 |
2.0 |
-0.3 |
-0.4 |
-0.1 |
|
9 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
1.9 |
1.4 |
-1.1 |
-0.6 |
0.7 |
-0.2 |
-0.3 |
0.1 |
0 |
|
10 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-5.0 |
-8.0 |
-2.0 |
0.3 |
2.0 |
0.6 |
-0.8 |
-0.2 |
0.1 |
|
11 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-4.0 |
-7.0 |
-3.0 |
0.3 |
2.0 |
0.2 |
-0.6 |
-0.2 |
0 |
|
12 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-1.0 |
-5.0 |
-2.0 |
0.7 |
2.0 |
0.2 |
-0.8 |
-0.3 |
0.5 |
|
13 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-3.0 |
-7.0 |
-1.0 |
0.3 |
2.0 |
0.2 |
-0.8 |
-0.8 |
0.6 |
|
14 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-1.0 |
-6.0 |
-2.0 |
0.3 |
2.2 |
0.2 |
-0.8 |
-1.2 |
0.3 |
|
15 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-3.5 |
-7.0 |
-2.5 |
0.3 |
2.0 |
1.2 |
-0.8 |
-1.2 |
0.4 |
|
16 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
1.3 |
3.0 |
-5.5 |
-0.4 |
2.8 |
1.3 |
-0.5 |
0.1 |
0.5 |
|
17 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
1.5 |
3.7 |
-4.2 |
-0.4 |
2.8 |
0.3 |
-0.5 |
0.2 |
0.2 |
|
18 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
0.9 |
3.1 |
-4.1 |
-0.4 |
2.4 |
0.3 |
-0.3 |
0.7 |
0.5 |
|
19 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
1.8 |
3.4 |
-4.5 |
-0.4 |
2.8 |
0.7 |
-0.5 |
0.4 |
0.1 |
|
20 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
1.1 |
3.0 |
-4.5 |
-0.4 |
2.8 |
0.3 |
-0.5 |
0.4 |
0.2 |
|
21 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-4.0 |
-7.0 |
-5.0 |
0.2 |
2.0 |
0.3 |
-0.6 |
-0.2 |
0 |
|
Продовження табл.4 |
|||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
22 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-2.0 |
-7.5 |
-3.0 |
2.3 |
2.0 |
1.2 |
-0.6 |
-0.2 |
0.9 |
|
23 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-2.0 |
-5.0 |
-3.0 |
0.3 |
2.0 |
1.2 |
-0.6 |
-1.2 |
0 |
|
24 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-2.0 |
-7.0 |
-3.7 |
0.3 |
2.0 |
0.2 |
-0.6 |
-0.9 |
4.0 |
|
25 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
1.0 |
-4.0 |
10.0 |
4.0 |
1.0 |
5.0 |
3.0 |
1.0 |
0.8 |
1.5 |
|
26 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
-2.0 |
-6.0 |
-14.0 |
-3.0 |
2.0 |
6.0 |
1.0 |
-0.5 |
-0.7 |
-0.2 |
|
27 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-2.0 |
-8.0 |
-2.0 |
0.3 |
3.0 |
0.2 |
-0.6 |
-0.2 |
0 |
|
28 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
-5.0 |
-10.0 |
-4.0 |
0.2 |
4.0 |
0.8 |
-1.5 |
-0.4 |
-0.1 |
|
29 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
14.0 |
4.0 |
-4.0 |
-0.4 |
2.8 |
0.3 |
-0.6 |
0.4 |
0.1 |
|
30 |
n |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
nTa |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
|
ƒ(nTa) |
0 |
2.8 |
1.6 |
-1.3 |
-0.8 |
0.8 |
-0.1 |
-0.4 |
0.1 |
0 |