Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BZhD.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
1.79 Mб
Скачать

16.Классификация производственных вибраций. Нормирование параметров вибраций.

Существует 2 метода нормирования:

• при гигиеническом нормировании производится ограничение параметров вибрации на раб.местах и поверхностях, контактирующих с руками работающих, исходя из физиологических требований, исключающих возникновение виброболезни.

• при технологическом нормировании ограничение параметров вибрации производится не только с физиологических требований, но и с учетом достижений науки и техники.

При нормировании общих вибраций учитывается вид вибрации.

Общая вибрация в зависимости от источника ее возникновения подразделяется на:

- общую вибрацию 1 категории - транспортную вибрацию, воздействующую на человека на рабочих местах самоходных и прицепных машин, транспортных средств при движении по местности, агрофонам и дорогам (в том числе при их строительстве).

- общую вибрацию 2 категории - транспортно-технологическую вибрацию, воздействующую на человека на рабочих местах машин, перемещающихся по специально подготовленным поверхностям производственных помещений, промышленных площадок, горных выработок, а также на рабочих места водителей легковых автомобилей и автобусов.

- общую вибрацию 3 категории - технологическую вибрацию, воздействующую на человека на рабочих местах стационарных машин или передающуюся на рабочие места, не имеющие источников вибрации

Общую вибрацию категории 3 по месту действия подразделяют на следующие типы:

а) на постоянных рабочих местах производственных помещений предприятий;

б) на рабочих местах на складах, в столовых, бытовых, дежурных и

других производственных помещений, где нет машин, генерирующих вибрацию;

в) на рабочих местах в административных и служебных помещениях заводоуправления, конструкторских бюро, лабораторий, учебных пунктов, вычислительных центров, здравпунктов, конторских помещениях, рабочих комнатах и других помещениях для работников умственного труда.

По временным характеристиками вибрация подразделяется на:

- постоянную вибрацию, для которой величина нормируемых параметров изменяется не более чем в 2 раза (6 дБ) за время наблюдения при измерении с постоянной времени 1 с;

- непостоянную вибрацию, для которой величина нормируемых параметров изменяется более чем в 2 раза (6 дБ) за время наблюдения при измерении с постоянной времени 1 с, в том числе:

а) колеблющуюся во времени вибрацию, для которой величина нормируемых параметров непрерывно изменяется во времени;

б) прерывистую вибрацию, когда контакт человека с вибрацией прерывается, причем длительность интервалов, в течение которых имеет место контакт, составляет более 1 с;

в) импульсную вибрацию, состоящую из одного или нескольких вибрационных воздействий (например, ударов), каждый длительностью менее 1 с

17. Методы борьбы с вибрацией и оценка эффективности их применения.

Основные методы борьбы с вибрацией.

- в ее источнике

- исключение режима резонанса путем подбора жесткости и массы

q-жесткость системы; m- масса; ?0-угл. скорость

- вибро демпфирование

- увеличение диссипативных сил.

Эффект определяется коэффициентом сопротивления среды

- динамическое гашение колебаний осущ-ся путем присоединения к защищаемому объекту sys, реакции которой уменьшают размах колебаний в точках присоединения sys

- борьба на путях ее распространения изменением конструктивных элементов машин и строительных конструкций (ввод ребер жесткости).

|Виброизоляция.

Уменьшение передачи колебаний от источника к защищаемому объекту с помощью спец. устройств, которые помещаются м/у ними – виброизоляторов. Осущ-ся за счет введения в колебательную sys доп. упругих связей, которые препятствуют передаче колебаний.

В качестве виброизоляторов use стальные пружины и прокладки из упругих материалов. Эффективность виброизоляции определяется коэф.передачи КП=Fосн/Fвозб.

• стальные пружины:

(+): могут use как при НЧ, так и при ВЧ колебаниях; дольше сохраняют упругие свойства; +хорошо противостоят воздействию нефтепродуктов и температур; относительно небольшие габариты.

(-) могут пропускать ВЧ колебания, поэтому часто use совместно с прокладками из упругих материалов.

|СИЗ от вибраций. Организация труда.

К СИЗ относятся: обувь на толстой упругой подошве, специальные перчатки и рукавицы, виброзащитные прокладки и пластины, снабженные креплениями для рук. При низких t use рукавицы для тепла.

В целях профилактики виброболезни рекомендуется спец. режим труда:

• суммарное время контакта с вибрацией не д.б.>2/3 времени раб. смены;

• одноразовый контакт с вибрацией не должен превышать 15-20 мин.;

• кроме обеденного перерыва (не менее 40 мин), существуют 2 регламентированных перерыва: - 20 мин ч/з 1-2 ч. с начала работы; - 30 мин ч/з 2 ч. после обеденного перерыва.

18.

Физическое понятие об акустических_ колебаниях охватывает как слышимые, так и неслышимые колебания упругих сред. Акустические колебания в диапазоне 16 Гц...20 кГц, воспринимаемые человеком с нормальным слухом, называют звуковыми, с частотой менее 16 Гц -- инфразвуковыми, выше 20 кГц ультразвуковыми. Распространяясь в пространстве, звуковые колебания создают акустическое поле. Ухо человека может воспринимать и анализировать звуки в широком диапазоне частот и интенсивностей.

 

В условиях городского шума происходит постоянное напряжение органов слуха, приводящее к их утомлению, снижению остроты слуха. Под влиянием шума нарушается состояние центральной нервной системы, снижаются внимание, работоспособность, особенно умственная.

При уровнях шума свыше 60 дБ снижаются:

- объем кратковременной памяти;

- умственная работоспособность;

- реакция на различные жизненные ситуации.

Кроме того, отмечаются повышенная утомляемость и головные боли, развиваются сердечно-сосудистые заболевания.

Основные физические характеристики звуковых волн: частота, длина волны, интенсивность, звуковое давление.

19.

Ультразвуки (неслышимые звуки) представляют собой механические колебания упругой среды и отличаются от звуковых волн более высокой частотой, превышающей верхний порог слышимости (20000гц); диапазон ультразвуковых колебаний чрезвычайно широк - от 2·104 до 109 гц.

Ультразвуковые волны распространяются в любой упругой среде (жидкой, твердой, газообразной), лучше в металлах, воде, хуже в воздухе.ю

Ультразвук обладает главным образом локальным действием на организм, поскольку передается при непосредственном контакте с ультразвуковым инструментом, обрабатываемыми деталями или средами, где возбуждаются ультразвуковые колебания. Ультразвуковые колебания, генерируемые ультразвуком низкочастотным промышленным оборудованием, оказывают неблагоприятное влияние на организм человека. Длительное систематическое воздействие ультразвука, распространяющегося воздушным путем, вызывает изменения нервной, сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов. Наиболее характерным является наличие вегетососудистой дистонии и астенического синдрома.

Инфразвук представляет собой механические колебания, распространяющиеся в упругой среде с частотами менее 20 Гц. Инфразвуковые колебания подчиняются в основном тем же закономерностям, что и звуковые, но низкая частота колебаний придает им некоторые особенности. Инфразвук отличается от слышимых звуков значительно большей длиной волны.

Распространение инфразвука в воздушной среде происходит, в отличие от шума, на большие расстояния от источника, вследствие малого поглощения его энергии. Инфразвук характеризуется такими же параметрами, как и звук. Чем больше амплитуда колебаний, тем больше инфразвуковое давление и соответственно сила инфразвука

Инфразвук влияет на весь организм человека, отражается на его здоровье и работоспособности. Данные многих исследователей свидетельствуют о высокой чувствительности организма человека к уровням колебаний с максимумом энергии в области инфразвуковых частот.

В результате длительного воздействия низкочастотных колебаний у человека развивается значительная астения, появляется слабость, утомляемость, снижается работоспособность, появляется раздражительность, нарушается сон. У некоторых лиц отмечаются нервно-вегетативные нарушения и даже появляются психические нарушения. Известно также, что рабочие компрессорных станций предъявляют жалобы на усталость, головную боль, общее недомогание, плохой сон.

20.

При гигиенической оценке шумы, согласно санитарным нормам, классифицируются по 2 принципам - характеру спектра и по временным характеристикам.

По характеру спектра шумы подразделяются на:

  • широкополосные, с непрерывным спектром шириной более одной октавы;

  • тональные, в спектре которых имеются выраженные дискретные тона. Тональный характер шума для практических целей (при контроле его параметров на рабочих местах) устанавливается измерением в третьоктавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.

По временным характеристика шумы подразделяются на:

  • постоянные, уровень звука которых за 8-часовой рабочий день (рабочую смену) изменяется во времени не более чем на 5 дБ (А) при измерениях на временной характеристике «медленно» шумомера;

  • непостоянные, уровень звука которых за 8-часовой рабочий день (рабочую смену) изменяется во времени более чем на 5 дБ (А) при измерениях на временной характеристике «медленно» шумомера.

Непостоянные шумы подразделяются в свою очередь на:

  • колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;

  • прерывистые, уровень звука которых ступенчато изменяется на 5 дБ (А) и более, причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;

  • импульсные, состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБ (AI) и дБ (А), измеренные соответственно на временных характеристиках «импульс» и «медленно» шумомера, отличаются не менее чем на 7 дБ (шумомеры должны отвечать ГОСТу 17187 - 81).

Принципы нормирования производственного шума заключаются в установлении  таких безопасных уровней звука, небольшое превышение которых будет является угрозой для жизни и здоровью населения, поскольку оно создает риск развития различных заболеваний, напрямую связанных с неблагоприятным воздействием шума.

Допустимые уровни звукового давления, уровни звука и эквивалентные уровни звука на рабочих местах в производственных помещениях и на территории предприятия устанавливаются в соответствии со стандартами.

21.

Для уменьшения шума применяют следующие основные методы: устранение причин или ослабление шума в источнике возникновения, изменение направленности излучения и экранирование шума, снижение шума на пути его распространения, акустическая обработка помещений, архитектурно-планировочные и строительно-акустические методы.

Для защиты людей от воздействия шума используют средства коллективной защиты (СКЗ) и средства индивидуальной защиты (СИЗ). Предотвращение неблагоприятного воздействия шума обеспечивается также лечебно-профилактическими и организационными мероприятиями, включающими, например, медосмотры, правильный выбор режимов труда и отдыха, сокращение времени пребывания в условиях промышленного шума.

Акустический расчёт звукоизоляции помещения

Расчет требуемой звукоизолирующей способности производится отдельно для каждого элемента ограждения (перекрытие, окно, дверь и др.) по следующим формулам:

а) при проникновении шума в смежное помещение, если известны уровни звуковой мощности шумящего оборудования

                  (3.9)

где   LpS  - суммарный уровень звуковой мощности всех источников   шума в смежном помещении, в дБ;

         Bш и Bи - постоянные соответственно шумного и изолируемого помещений, м2;

         Si   - площадь рассматриваемого ограждения или отдельного

элемента ограждения, через которое шум может проникать в изолируемое помещение,  м2;

        Lдоп  - допустимый по нормам уровень звукового давления в изолируемом помещении в данной октавной полосе частот,  дБ;

         n   - общее количество применяемых в расчете отдельных элементов ограждения.

б) при проникновении шума из окружающей атмосферы и из смежного помещения, если задан суммарный уровень звукового давления от всех источников шума  LS  перед данным ограждением имеем:

 

                

22.

К ионизирующим относятся корпускулярные излучения, которые состоят из частичек с массой покоя, которая отличается от ноля (альфа-, бета-частички, нейтроны) и электромагнитные излучения (рентгеновское и гамма-излучение), которые при взаимодействии с веществами могут образовывать в них ионы.

Альфа-излучение -- это поток ядер гелия, который излучается веществом при радиоактивном распаде ядер с энергией, которая не превышает нескольких мегаэлектровольт (МеВ)

Бета-частички -- это поток электронов и протонов..

Нейтроны вызывают ионизацию веществ и вторичное излучение, которое состоит из заряженных частичек и гамма-квантов.

Гамма-излучение -- это электромагнитное (фотонное) излучение с большой проникающей и малой ионизирующей способностью с энергией 0,001 3 МеВ.

Рентгеновское излучение -- излучение, возникающее в среде, которая окружает источник бета-излучения, в ускорителях электронов и является совокупностью тормозного и характерного излучений, энергия фотонов которых не превышает 1 МеВ. Характерным называют фотонное излучение с дискретным спектром, который возникает при изменении энергетического состояния атома.

Тормозное излучение -- это фотонное излучение с непрерывным спектром, которое возникает при изменении кинетической энергии заряженных частичек.

Источники узлучения:

  • Искусственные радионуклиды.

  • Ядерные HYPERLINK "https://ru.wikipedia.org/wiki/%D0%AF%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B9_%D1%80%D0%B5%D0%B0%D0%BA%D1%82%D0%BE%D1%80"реакторы.

  • Ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение).

  • Рентгеновский аппарат как разновидность ускорителей, генерирует тормозное рентгеновское излучение.

Биологическое воздействие

Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочекмакромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.

После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1—2 Зв на всё тело.

В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации)[10].

23.

Активность (А) радиоактивного вещества – число спонтанных ядер-ных превращений (dN) в этом веществе за малый промежуток времени (dt):

.

1 Бк (беккерель) равен одному ядерному превращению в секунду. В литературе, изданной до 1996 года часто ввстречается прежняя  (внесистемная) единица – Кюри (Ки): 1 Ки = 3,7 1010  Бк.

Эффективная доза (E) — величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов итканей следует учитывать с разным коэффициентом, который называется коэффициентом радиационного риска. Умножив значение эквивалентной дозы на соответствующий коэффициент радиационного риска и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект дляорганизма.

Нормирование осуществляется по санитарным правилам и нормативам СанПин 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)». Устанавливаются дозовые пределы эквивалентной дозы для следующих категорий лиц:

  • персонал — лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);

  • все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

Основные пределы доз и допустимые уровни облучения персонала группы Б равны четверти значений для персонала группы А.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для обычного населения за всю жизнь — 70 мЗв. Планируемое повышенное облучение допускается только для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

24.

К ионизирующим относятся корпускулярные излучения, которые состоят из частичек с массой покоя, которая отличается от ноля (альфа-, бета-частички, нейтроны) и электромагнитные излучения (рентгеновское и гамма-излучение), которые при взаимодействии с веществами могут образовывать в них ионы.

Альфа-излучение -- это поток ядер гелия, который излучается веществом при радиоактивном распаде ядер с энергией, которая не превышает нескольких мегаэлектровольт (МеВ)

Бета-частички -- это поток электронов и протонов..

Нейтроны вызывают ионизацию веществ и вторичное излучение, которое состоит из заряженных частичек и гамма-квантов.

Гамма-излучение -- это электромагнитное (фотонное) излучение с большой проникающей и малой ионизирующей способностью с энергией 0,001 3 МеВ.

Рентгеновское излучение -- излучение, возникающее в среде, которая окружает источник бета-излучения, в ускорителях электронов и является совокупностью тормозного и характерного излучений, энергия фотонов которых не превышает 1 МеВ. Характерным называют фотонное излучение с дискретным спектром, который возникает при изменении энергетического состояния атома.

Тормозное излучение -- это фотонное излучение с непрерывным спектром, которое возникает при изменении кинетической энергии заряженных частичек.

Защита от ионизирующих излучений может осуществляться путем использования следующих принципов:

  • использование источников с минимальным излучением путем перехода на менее активные источники, уменьшение количества изотопа;

  • сокращение времени работы с источником ионизирующего излучения;

  • отдаление рабочего места от источника ионизирующего излучения;

  • экранирование источника ионизирующего излучения.

Альфа-частицы экранируются слоем воздуха толщиной несколько сантиметров, слоем стекла толщиной несколько миллиметров.

С целью защиты от бета-излучения используются материалы с малой атомной массой. Для этого используют комбинированные экраны, в которых со стороны источника располагается материал с малой атомной массой толщиной, которая равна длине пробега бета-частиц, а за ним -- с большей массой.

С целью защиты от рентгеновского и гамма-излучения применяются материалы с большой атомной массой и с высокой плотностью (свинец, вольфрам).

Для защиты от нейтронного излучения используют материалы, которые содержат водород (вода, парафин), а также бор, бериллий, кадмий, графит.

25.

Электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами.

Воздействие на человека статических электрических и магнитных полей

Электрические поля от избыточных зарядов на предметах, одежде, теле человека, оказывают большую нагрузку на нервную систему человека. 

Постоянные магнитные поля в обычных условиях не представляют опасности и находят применение в различных приборах магнитотерапии.

Влияние электромагнитных полей промышленной частоты, электромагнитных полей радиочастот.

Электромагнитные поля оказывают на организм человека тепловое и биологическое воздействие. Переменное электрическое поле вызывает нагрев диэлектриков (хрящей, сухожилий и др.) за счет токов проводимости и за счет переменной поляризации. Выделение теплоты может приводить к перегреванию, особенно тех органов и тканей, которые недостаточно хорошо снабжены кровеносными сосудами (хрусталик глаза, желчный пузырь, мочевой пузырь). Наиболее чувствительны к биологическому воздействию радиоволн центральная нервная и сердечно-сосудистая системы. При длительном действии радиоволн не слишком большой интенсивности (порядка 10 Вт/м2) появляются головные боли, быстрая утомляемость, изменение давления и пульса, нервно-психические расстройства. Может наблюдаться похудение, выпадение волос, изменение в составе крови.

26.

В зависимости от отношения подвергающегося воздействию ЭМП человека к источнику излучения в условиях производства в стандартах России различаются два вида воздействия: профессиональное и непрофессиональное. Для условий профессионального воздействия характерно многообразие режимов генерации и вариантов воздействия. ПДУ для профессионального и непрофессионального воздействия различны.

В качестве ПДУ ЭМП принимаются такие значения, которые при ежедневном облучении в свойственном для данного источника излучения режимах не вызывает у населения без ограничения пола и возраста заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследования в период облучения или в отдаленные сроки после его прекращения.

В зависимости от места нахождения человека относительно источника ЭМП он может подвергаться воздействию электрической или магнитной составляющей поля или их сочетанию, а в случае пребывания в волновой зоне - воздействию сформированной электромагнитной волны. По этому признаку определяется необходимый критерий контроля безопасности.

Защита от ЭМП

  • Экранирование (активное и пассивное; источника электромагнитного излучения или же объекта защиты; комплексное экранирование).

  • Удаление источников из ближней зоны; из рабочей зоны.

  • Конструктивное совершенствование оборудования с целью снижения используемых уровней ЭМП, общей потребляемой и излучаемой мощности оборудования.

  • Ограничение времени пребывания операторов или населения в зоне действия ЭМП.

27.

Лазер- устройство, предназначенный для выработки и усиления электромагнитной энергии оптического диапазона частот с использованием процесса управляемой индукционной эмиссии. Он работает на принципе индуцированного излучения, получаемого при оптической накачке (например, воздействием импульсов света) термически неравновесной (активной) среды, в качестве которой служат диэлектрические кристаллы, стекло, газы, полупроводники и плазма.

Класс

Выходные излучения лазера

I

Не представляет опасности для глаз и кожи

II

Представляет опасность при облучении глаз прямым или зеркальным отражением излучения

III

Представляет опасность при облучении глаз прямым, зеркальным отражением излучения, а также диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности и (или) при облучении кожи прямым или зеркальным отражением излучения

IV

Представляет опасность при облучении кожи диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности

Эффекты воздействия (тепловой, фотохимический, ударно - акустический и др.) определяются механизмом взаимодействия лазерного излучения с тканями и зависят от энергетических и временных параметров излучения, а также от биологических и физики - химических особенностей облучаемых тканей и органов.

Лазерное излучение представляет особую опасность для тканей, максимально поглощающих излучение. Сравнительно легкая уязвимость роговицы и хрусталика глаза, а также способность оптической системы глаза многократно увеличивать плотность энергии(мощность) излучения видимого и ближнего инфракрасного диапазона (780<?<1400 нм) на глазном дне по отношению к роговице делают глаз наиболее уязвимым органом.

Лазерное излучение дальней инфракрасной области (>1400 нм) способно проникать через ткани тела на значительную глубину, поражая внутренние органы (прямое лазерное излучение).

Длительное хроническое действие диффузно отраженного лазерного излучения нетепловой интенсивности может вызывать неспецифические, преимущественно вегетативно - сосудистые нарушения; функциональные сдвиги могут наблюдаться со стороны нервной, сердечно - сосудистой системы, желез внутренней секреции. Работающие жалуются на головные боли, повышенную утомляемость, раздражительность, потливость.

28.

Лазер- устройство, предназначенный для выработки и усиления электромагнитной энергии оптического диапазона частот с использованием процесса управляемой индукционной эмиссии. Он работает на принципе индуцированного излучения, получаемого при оптической накачке (например, воздействием импульсов света) термически неравновесной (активной) среды, в качестве которой служат диэлектрические кристаллы, стекло, газы, полупроводники и плазма.

Класс

Выходные излучения лазера

I

Не представляет опасности для глаз и кожи

II

Представляет опасность при облучении глаз прямым или зеркальным отражением излучения

III

Представляет опасность при облучении глаз прямым, зеркальным отражением излучения, а также диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности и (или) при облучении кожи прямым или зеркальным отражением излучения

IV

Представляет опасность при облучении кожи диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности

Предупреждение поражений лазерным излучением включает систему мер инженерно-технического, планировочного, организационного, санитарно-гигиенического характера.

При использовании лазеров II-III классов в целях исключения облучения персонала необходимо либо ограждение лазерной зоны, либо экранирование пучка излучения. Экраны и ограждения должны изготавливаться из материалов с наименьшим коэффициентом отражения, быть огнестойкими и не выделять токсических веществ при воздействии на них лазерного излучения.

Лазеры IV класса опасности размещаются в отдельных изолированных помещениях и обеспечиваются дистанционным управлением их работой.

При размещении в одном помещении нескольких лазеров следует исключить возможность взаимного облучения операторов, работающих на различных установках. Не допускаются в помещения, где размещены лазеры, лица, не имеющие отношения к их эксплуатации. Запрещается визуальная юстировка лазеров без средств защиты.

Для удаления возможных токсических газов, паров и пыли оборудуется приточно-вытяжная вентиляция с механическим побуждением. Для защиты от шума принимаются соответствующие меры звукоизоляции установок, звукопоглощения и др.

К индивидуальным средствам защиты, обеспечивающим безопасные условия труда при работе с лазерами, относятся специальные очки, щитки, маски, обеспечивающие снижение облучения глаз до ПДУ.

29.

Многообразные формы трудовой деятельности делятся на физический и умственный труд.

Физический труд характеризуется в первую очередь повышенной нагрузкой на опорно-двигательный аппарат и его функциональные системы (сердечно-сосудистую, нервно-мышечную, дыхательную и др.), обеспечивающие его деятельность. 

Умственный труд объединяет работы, связанные с приемом и переработкой информации, требующей преимущественного напряжения сенсорного аппарата, внимания, памяти, а также активизации процессов мышления, эмоциональной сферы. 

Тяжесть и напряженность труда характеризуются степенью функционального напряжения организма. Оно может быть энергетическим, зависящим от мощности работы,–при физическом труде, и эмоциональным –при умственном труде, когда имеет место информационная перегрузка.

Тяжесть трудового процесса оценивают по ряду показателей, выраженных в эргометрических величинах, характеризующих трудовой процесс, независимо от индивидуальных особенностей человека, участвующего в этом процессе. Основными показателями тяжести трудового процесса являются:

физическая динамическая нагрузка;

масса поднимаемого и перемещаемого груза вручную;

стереотипные рабочие движения;

статическая нагрузка;

рабочая поза;

наклоны корпуса;

перемещение в пространстве.

30.

Микроклимат производственных помещений – это метеорологические условия внутренней среды этих помещений, которые определяются действующими на организм человека сочетаниями температуры, влажности, скорости движения воздуха и теплового излучения.

Высокая температура воздуха способствует быстрой утомляемости работающего, может привести к перегреву организма, тепловому удару. Низкая температура воздуха может вызвать местное или общее охлаждение организма, стать причиной простудного заболевания либо обморожения.

Влажность воздуха оказывает значительное влияние на терморегуляцию организма человека. Высокая относительная влажность (отношение содержания водяных паров в 1 м3 воздуха к их максимально возможному содержанию в этом же объёме) при высокой температуре воздуха способствует перегреванию организма, при низкой же температуре она усиливает теплоотдачу с поверхности кожи, что ведёт к переохлаждению организма. Низкая влажность вызывает пересыхание слизистых оболочек путей работающего.

Подвижность воздуха эффективно способствует теплоотдаче организма человека и положительно проявляется при высоких температурах, но отрицательно низких.

Терморегуляция (<термо> - температура, <регуляция> - управление) - совокупность процессов поддержания относительного постоянства температуры организма, состоящая из процессов образования и отдачи тепла.

Соответствие между количеством этой теплоты и охлаждающей способностью среды характеризует её как комфортную. В условиях комфорта у человека не возникает беспокоящих его температурных ощущений холода или перегрева. Соответствие между количеством этой теплоты и охлаждающей способностью среды характеризует её как комфортную. В условиях комфорта у человека не возникает беспокоящих его температурных ощущений холода или перегрева.

31.

Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005-88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны" и СанПиН 2.24.548-96 "Гигиенические требования к микроклимату производственных помещений". Они едины для всех производств и всех климатических зон с некоторыми незначительными отступлениями.

В этих нормах отдельно нормируется каждый компонент микроклимата в рабочей зоне производственного помещения: температура, относительная влажность, скорость воздуха в зависимости от способности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделений в рабочем помещении.

Для оценки характера одежды (теплоизоляции) и акклиматизации организма в разное время года введено понятие периода года. Различают теплый и холодный период года. Теплый период года характеризуется среднесуточной температурой наружного воздуха +10oС и выше, холодный -ниже +10oС.

При учете интенсивности труда все виды работ, исходя из общих энергозатрат организма, делятся на три категории: легкие, средней тяжести и тяжелые. Характеристику производственных помещений по категории выполняемых в них работ устанавливают по категории работ, выполняемых 50% и более работающих в соответствующем помещении

По интенсивности тепловыделений производственные помещения делят на группы в зависимости от удельных избытков явной теплоты. Явной называется теплота, воздействующая на изменение температуры воздуха помещения, а избытком явной теплоты - разность между суммарными поступлениями явной теплоты и суммарными теплопотерями в помещении.

Оптимальные микроклиматические условия - это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает ощущение теплового комфорта и создает предпосылки для высокой работоспособности.

Допустимые микроклиматические условия - это такие сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиологических приспособительных возможностей. 

32.

Для обеспечения требуемых параметров микроклимата в помещениях используются системы вентиляции и кондиционирования воздуха, а также различные отопительные устройства.

Вентиляция помещений достигается удалением из них нагретого или загрязненного воздуха и подачей чистого наружного воздуха.

Кондиционированием воздуха называется создание и автоматическое поддержание в помещениях независимо от внешних метеорологических условий постоянных или изменяющихся по определенной программе температуры, влажности, чистоты и скорости движения воздуха, сочетание которых создает комфортные условия для человека.

Система вентиляции представляет собой комплекс устройств, обеспечивающих воздухообмен в помещении, т.е. удаление из помещения загрязненного, нагретого, влажного воздуха и подачу в помещение свежего, чистого воздуха.

Целью отопления помещений является поддержание в них в холодный период года заданной температуры воздуха. Системы отопления разделяются на водяные, паровые, воздушные и комбинированные.

33.

Средства индивидуальной защиты (СИЗ) предназначены для защиты кожи и органов дыхания от попадания радиоактивных веществ, отравляющих веществ и биологических средств (РВ, 0В и ВС).

Классификация СИЗ

Классификация СИЗ в России устанавливается ГОСТ 12.4.011-89, где в зависимости от назначения они подразделяются на 11 классов, которые, в свою очередь, в зависимости от конструкции подразделяются на типы:

  • Костюмы изолирующие (пневмокостюмы, гидроизолирующие костюмы, скафандры)

  • Средства защиты органов дыхания (противогазыреспираторы,самоспасателипневмошлемыпневмомаскипневмокуртки)

  • Одежда специальная защитная (тулупыпальтополупальтополушубки,накидкиплащиполуплащихалатыкостюмыкурткирубашкибрюкишорты,комбинезоныполукомбинезоныжилетыплатьясарафаныблузыюбки,фартукинаплечники)

  • Средства защиты ног (сапогисапоги с удлиненным голенищемсапоги с укороченным голенищемполусапогиботинкиполуботинкитуфлибахилы,галошиботытапочки (сандалии), унтычувякищиткиботфортынаколенники,портянки,

  • Средства защиты рук (рукавицыперчаткиполуперчатки, напальчники, наладонники, напульсники, нарукавники, налокотники)

  • Средства защиты головы (каски защитныешлемыподшлемникишапки,беретышляпыколпакикосынкинакомарники)

  • Средства защиты глаз (очки защитные)

  • Средства защиты лица (щитки защитные лицевые)

  • Средства защиты органа слуха (противошумные шлемыпротивошумные вкладышипротивошумные наушники,

  • Средства защиты от падения с высоты и другие предохранительные средства (предохранительные пояса, тросы, ручные захваты, манипуляторы, наколенники, налокотники, наплечники)

  • Средства дерматологические защитные (защитные крема, очистители кожи, репаративные средства)

  • Средства защиты комплексные

34.

При естественной вентиляции смена воздуха происходит под влиянием теплового и ветрового напора. Действие теплового и ветрового напора проявляется преимущественно одновременно.

Воздухообмен в производственных зданиях может быть организованным и неорганизованным. Организованный воздухообмен включает в себя регулирование кратности воздухообмена и скорости движения воздуха.

Организованный воздухообмен обычно создается управляемым проветриванием или дефлекторами. Неорганизованный воздухообмен (инфильтрация) в помещениях происходит через неплотности ограждающих конструкций (окна, двери, пористость ограждающих конструкций и т. д.).

Согласно санитарным нормам, неорганизованный приток наружного воздуха для возмещения вытяжки в холодный период года допускается в объеме не более однократного воздухообмена в час.

Организованная естественная вентиляция — аэрация. В производственных помещениях аэрация осуществляется обычно через световые фонари, окна или через специальные          шахты или проемы. Кратность воздухообмена, а также направление воздушного потока при аэрации можно регулировать величиной открытия проемов в соответствии с тепловым и ветровым напорами.

Дефлектор  — аэродинамическое устройство, устанавливаемое над вентиляционным каналом, дымоходом, в системе охлаждения поршневого авиамотора и др. Применяется для усиления тяги в канале за счёт эффекта Бернулли: чем больше скорость движения потока воздуха при изменении поперечного сечения канала, тем меньше статическое давление в этом сечении. Дефлекторы увеличивают тягу в канале и повышают эффективность систем вентиляции.

35. Механическая вентиляция. Классификация вентиляционных систем. Основные элементы вентиляционных систем. Виды вентиляторов, типы их исполнения.

Механическая вентиля́ция (от лат. ventilatio — проветривание) — процесс удаления тработанного воздуха из помещения и замена его наружным при помощи вентиляторов и эжекторов. При механической вентиляции воздухообмен происходит за счет разности давления, создаваемой вентилятором или эжектором. Этот способ вентиляции более эффективен, так как воздух предварительно может быть очищен от пыли и доведен до требуемой температуры и влажности.

Преимущества: большой радиус действия вследствие значительных давлений, создаваемых вентиляторами; сохранение необходимого в/о независимо от естественных факторов; возможность предварительной обработки подаваемого воздуха; оптимальные воздухораспределение с подачей воздуха непосредственно к раб местам, возможность удаления загрязненного воздуха с мест образования вредностей.

Системы вентиляции классифицируются по следующим признакам:

  • По способу создания давления и перемещения воздуха: с естественным и искусственным (механическим) побуждением

  • По назначению: приточные и вытяжные

  • По способу организации воздухообмена: общеобменные, местные, аварийные, противодымные

Системы вентиляции включают в себя группы самого разнообразного оборудования: прежде всего, это вентиляторы, вентиляторные агрегаты или вентиляционные установки. Среди дополнительного оборудования — шумоглушители, воздушные фильтры, электрические и водяные воздухонагреватели, регулирующие и воздухораспределительные устройства и пр.

Вентиляторы

Вентилятор представляет собой механическое устройство, предназначенное для перемещения воздуха по воздуховодам системы вентиляции. По конструкции и принципу действия вентиляторы делятся на канальные (круглые и прямоугольные), крышные, осевые (аксиальные), центробежные (радиальные) и тангенциальные (диаметральные), батутные и т.д.

Шумоглушители

Установка в систему вентиляции шумоглушителей является одной из эффективных мер по снижению аэродинамического шума в воздушном потоке. Наиболее часто применяемые шумоглушители конструктивно делятся на пластинчатые и трубчатые.

Воздушные фильтры

Служат для очистки приточного воздуха, а в некоторых случаях и вытяжного воздуха. Существует множество типов конструкций воздушных фильтров. Принцип действия, конструкция и материал фильтра зависят от требуемых параметров воздуха.

Воздухонагреватели

Для подогрева воздуха в вентиляционных системах используются воздухонагреватели. Большинство воздухонагревателей в вентиляционных системах — водяные либо электрические.

36. Особенности вентиляционных систем взрывоопасных химических производств. Аварийная вентиляция.

Технологические процессы в производственных помещениях могут сопровождаться выделением взрывоопасных газов и паров, пламени и искр. В зависимости от особенностей технологического процесса производственного помещения, системы вентиляции должны соответствовать определенным требованиям, чтобы не быть причиной взрыва или пожара.

Аварийную вентиляцию производственных помещений, в которые возможно внезапное поступление больших количеств вредных или горючих газов, паров или аэрозолей, предусматривают по требованиям технологов. Вытяжные устройства (решетки или патрубки) для удаления воздуха системами аварийной вентиляции целесообразно размещать в рабочей зоне при выделении газов и паров, имеющих при поступлении их в помещение удельный вес больше удельного веса воздуха в рабочей зоне; в верхней зоне при выделении газов и паров с меньшим удельным весом. Аварийную вентиляцию для удаления дыма при пожаре (противодымная вентиляция) предусматривают с целью обеспечения эвакуации людей из помещений здания в начальной стадии пожара, возникшего в одном из помещений.

Для аварийной вентиляции следует использовать:

а) основные системы общеобменной вентиляции с резервными вентиляторами, а также системы местных отсосов с резервными вентиляторами, обеспечивающие расход воздуха, необходимый для аварийной вентиляции;

б) системы, указанные в подпункте «а», и дополнительно системы аварийной вентиляции на недостающий расход воздуха;

в) только системы аварийной вентиляции, если использование основных систем невозможно или нецелесообразно.

  1. Определение необходимого воздухообмена при общеобменной вентиляции.

Потребный воздухообмен определяется по формуле:

, м3/ч (1)

где: L, м3/ч - потребный воздухообмен;

G, г/ч - количество вредных веществ, выделяющихся в воздух помещения;

xв, мг/м3 - предельно допустимая концентрация вредности в воздухе рабочей зоны помещения, согласно ГОСТ 12.1.005-88 по [1];

xн, мг/м3 - максимально возможная концентрация той же вредности в воздухе населенных мест по таблице 1, согласно СН-3086-84.

Применяется также понятие кратности воздухообмена (n), которая показывает сколько раз в течение одного часа воздух полностью сменяется в помещении. Значение n   может быть достигнуто естественным воздухообменом без устройства механической вентиляции.

Кратность воздухообмена определяется по формуле:

n = L/Vп , ч-1 (2)

где: Vп - внутренний объем помещения, м3.

Согласно СН 245-71, кратность воздухообмена n 10 недопустимо.

Так как xн определяется по таблице 1 (см. приложение), а xв по таблице 2; то для расчета потребного воздухообмена необходимо в каждом случае определять количество вредных веществ, выделяющихся в воздух помещения.

  1. Местная вентиляция. Виды местной вентиляции. Расчет местных вытяжных систем.

Местная механическая вентиляция

• К системе приточной вентиляции относятся воздушные души, воздушные завесы и воздушные оазисы. ДУШИ применяются, когда на рабочего воздействуют потоки тепла с интенсивностью от 350 Ват/кв.м. Они представляют собой направленные на рабочего воздушные потоки с определенными параметрами. ЗАВЕСЫ предназначены для предотвращения прорывов холода в помещение ч/з проемы зданий.t воздуха в завесах, установленных у дверей, не должна превышать 50, у ворот – 70. ОАЗИСЫ предназначены для создания оптимальных параметров микроклимата на ограниченных площадях.

• К системе местной вытяжной вентиляции относятся кожухи, камеры, герметично/плотно закрывающие технологическое оборудование; вытяжные зонты, шкафы; бортовые отсосы, панели равномерного всасывания. Местная вытяжная вентиляция предназначена для предотвращения распространения ВВ по рабочей зоне всего помещения. Для этого вредные выделения удаляются непосредственно с мест их образования.

L=3600•F•V.

F - Площадь сечений, ч/з которые ВВ могут проникнуть в рабочую зону.

V - min необходимая скорость подсоса воздуха в этих сечениях, зависит от класса опасности ВВ. Эффективность работы вытяжного зонта зависит от его габаритов, высоты подвеса и угла раскрытия.

39. Кондиционирование воздуха. Принципиальная схема кондиционера.

Кондиционирование воздуха — автоматическое поддержание в закрытых помещениях всех или отдельных параметров воздуха (температуры, относительной влажности, чистоты, скорости движения воздуха) с целью обеспечения оптимальных метеорологических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечения сохранности ценностей. Кондиционирование воздуха в помещениях предусматривается для создания и поддержания в них:

  • установленных нормами допускаемых условий воздушной среды, если они не могут быть обеспечены более простыми средствами;

  • искусственных климатических условий в соответствии с технологическими требованиями внутри помещения или части их круглогодично или в течение теплого либо холодного периода года;

  • оптимальных (или близких к ним) гигиенических условий воздушной среды в производственных помещениях, если это экономически оправдано увеличением производительности труда;

  • оптимальных условий воздушной среды в помещениях общественных и жилых зданий, административных и многофункциональных, а также вспомогательных зданий промышленных предприятий.

При испарении, влага забирает тепло, а при конденсации, отдает. Именно на этом принципе и базируется устройство кондиционера. Во внутреннем блоке происходит кипение и испарение хладагента (фреон – газ, кипящий при комнатной температуре и атмосферном давлении). Фреон забирает тепло у теплообменника внутреннего блока, который еще называется испаритель. Воздух, прогоняемый вентилятором через испаритель, отдает свое тепло и выходит из блока охлажденным. Во внешнем блоке, который находится на улице, происходит обратный процесс. Под давлением, создаваемым компрессором, хладагент конденсируется в теплообменнике внешнего блока, который называется конденсатор. Размеры и характеристики испарителя и конденсатора подбираются таким образом, чтобы весь фреон в них успевал полностью превратиться в жидкость или газ. Компрессор представляет собой насос высокого давления для газа. Компрессор создает как раз такое давление, чтобы при нормальных температурах весь хладагент успевал сконденсироваться во внешнем блоке. Далее хладагент проходит через дросселирующее устройство. В бытовых кондиционерах это капиллярная трубка. Именно такую трубку можно увидеть под теплообменником на задней стенке старого холодильника. В капиллярной трубке давление падает и хладагент начинает кипеть. Но так как все трубы холодильного контура надежно утеплены, существенной потери производительности кондиционера не происходит. Основной теплообмен совершается при попадании кипящего хладагента в испаритель, обдуваемый теплым воздухом. Интенсивность кипения повышается лавинообразно и так же быстро понижается температура теплообменника. Поэтому устройство кондиционера представляет собой следующее. Внешний блок – это металлический ящик с вентилятором и соответствующими отверстиями, в котором находится компрессор, капиллярная трубка, вентилятор внешнего блока, а также конденсатор.

40. Аэродинамические и санитарно-гигиенические испытания вентиляционных систем выполняемые в производственных помещениях.

Длительная эксплуатация вентиляции приводит к утрате ею эксплуатационных характеристик - воздух в помещениях дольше застаивается, в нём увеличивается концентрация бактерий и спор плесени, пыль в воздуховодах таит опасность пожара.  Эффективным методом для определения наиболее проблемных мест в системе вентиляции являются аэродинамические исследования. В ходе этих работ мы сначала согласно проекту выбираем точки замера, а затем определяем расход воздуха и падение давления для каждого воздуховода в отдельности. Полученные данные позволяют оценить правильность работы системы, отклонения от проектных показателей, а также определить наиболее проблемные участки, чтоб эффективно выполнить прочистку вентиляции.

Аэродинамические испытания систем вентиляции входят в комплекс работ проводимых при наладке и паспортизации. Методика проведения работ четко описана в  ГОСТ  12.3.018-79 «Системы вентиляционные методы аэродинамических испытаний».

Цель аэродинамических испытаний  – настройка систем вентиляции на проектный расход воздуха во всех расчетных точках. Для определения возможности достижения  проектных расходов в вентиляционной сети, изначально замеряют развиваемое вентилятором  давление и сравнивают его с проектным показателем, в случае если показатели совпадают, приступают к балансировке сети воздуховодов.

Аэродинамические испытания сложный и кропотливый процесс, требующий большого опыта. Для проведения работ по испытаниям и наладке – требуется полный доступ к вентиляционному оборудованию и системе воздуховодов. Кроме того к моменту проведения работ по испытаниям и наладке должны быть смонтированы и подключены щиты управления вентиляционным оборудованием.   Также современные требования по оптимизации энергозатрат при эксплуатации вентиляционных установок обязывают специалистов проводить более точную наладку вентиляционных систем.

Санитарно-гигиенические испытания и обследования проводятся для проверки соответствия состояния воздушной среды помещений требуемым нормам, а также для оценки эффективности работы вентиляции после ее наладки. Они осуществляются при расчетном режиме выделения вредностей в помещениях и работе вентиляции.

При проведении санитарно-гигиенических испытаний и обследований определяются: метеорологические условия в обслуживаемой зоне и на рабочих местах (температура, относительная влажность и подвижность воздуха), содержание в воздухе помещений пыли, газов и паров, количество вредностей в приточном воздухе и его параметры (температура и относительная влажность), общее количество поступающего и уходящего из помещений воздуха. Такие испытания должны проводиться в различные периоды года в зависимости от вида вредных выделений: вредных газов и паров — в холодный период, тепловыделений — в теплый период; при одновременном выделении газа и тепла — в холодный период с проверкой теплового режима в теплый период.

 До начала испытаний устанавливают места для замеров и отбора проб воздуха. Количество контролируемых точек зависит от расположения рабочих мест в помещении, характера и мест выделения вредностей, схемы воздухообмена и других условий. 

В процессе санитарно-гигиенического обследования необходимо определять участки наибольших и наименьших значений содержания вредностей, отклонения от нормальных технологических процессов, нарушения в работе вентиляции и другие факторы, влияющие на изменение содержания вредностей в воздушной среде помещений.

Данные, полученные при санитарно-гигиенических обследованиях, являются основными для принятия решений об испытаниях и наладке вентиляционных установок, а при необходимости и их реконструкции.

41. Основные требования к системам вентиляции.

Требования к системам вентиляции и кондиционирования зависят от задач, для решения которых устанавливаются эти системы. Однако есть общие принципы, которые нужно учитывать при проектировании систем.

Санитарно-гигиенические требования

Воздушный комфорт людей, находящихся в помещении, зависит от нескольких параметров, которые можно регулировать с помощью систем вентиляции и кондиционирования. Микроклимат характеризуется:

• Температурой воздуха

• Относительной влажностью

• Скоростью движения воздуха (подвижностью).

Для различных типов помещений (жилые, общественные, производственные) существуют нормативы и правила (СНиПы, санитарные нормы), устанавливающие оптимальные и допустимые параметры воздуха.

Оптимальные (рекомендуемые) параметры - это наиболее благоприятные условия для наилучшего самочувствия человека (область комфортного кондиционирования), условия для протекания технологического процесса, сохранность ценностей культуры (область технологического кондиционирования воздуха). Если человек находится в помещении с оптимальными параметрами воздуха, он ощущает тепловой комфорт и имеет высокую работоспособность.

Допустимые (обязательные) параметры микроклимата устанавливаются для тех случаев, когда оптимальные параметры почему-либо не соблюдаются (по техническим или экономическим причинам). Если человек находится в помещении с допустимыми параметрами микроклимата, он может почувствовать временный дискомфорт и снижение работоспособности.

Кроме того, санитарные нормы регламентируют: Чистоту воздуха (загрязнение в воздухе рабочей зоны не должно превышать ПДК). Максимально допустимый уровень шума. Минимальный расход свежего воздуха на одного человека. Если количество и качество продукции на производстве зависит от точности режима технологии, а не от производительности сотрудников, то в таком помещении нужно поддерживать параметры воздуха, оптимальные для производственного процесса. Если же производительность определяется в основном людьми, работающими в помещении, то основное внимание нужно уделять комфортности персонала.

Эксплуатационные требования

Выполнение этих требований должно облегчить эксплуатацию системы после начала ее

работы:

• Обеспечение достаточно точного поддержания параметров воздуха (особенно

важно в прецизионном кондиционировании для поддержания технологических

параметров)

• Минимальная потребность в ремонте и обслуживании, их простота и удобство

• Оборудование, которое требует обслуживания, должно быть установлено в

минимальном количестве технических помещений.

• Малая инерционность системы. Переключение с режима охлаждения на нагрев и

наоборот должно производиться максимально быстро.

• При остановке одного из кондиционеров другой должен продолжать работу,

обеспечивая не менее 50% необходимого воздухообмена (взаимная блокировка

систем).

Экономические требования

При проектировании системы вентиляции и кондиционирования нужно минимизировать ее стоимость. Учитывать нужно не только стоимость приборов и коммуникаций, но и дальнейшие расходы на обслуживание системы.

42. Отопление производственных помещений. Выбор системы отопления для обеспечения параметров микроклимата в рабочей зоне и выполнения требований по взрывобезопасности на химических предприятиях.

Создание комфортных условий для рабочего – важная составляющая для качественного и успешного производства. В понятие «комфортные условия», прежде всего, входит хорошее отопление промышленных помещений. Порой это сделать не так уж просто потому, что для проведения системы отопления в огромных складах, цехах и ангарах требуются достаточно большие затраты и усилия. Более того, нужно грамотно спроектировать систему отопления, чтобы она была эффективной и действенной. А ее устройство должно отвечать особым строительно-технологическим требованиям:

  • санитарно-гигиеническим,

  • строительным,

  • монтажным,

  • эксплуатационным,

  • экономическим.

    Из всех существующих систем отопления самая оптимальная для промышленных строений – воздушное отопление. Основным оборудованием в данном случае является воздухонагреватель или, иными словами, теплогенератор – мощная установка, основным видом топлива которой чаще всего является природный газ. К нему подводится система теплопроводов для перемещения по ним теплоносителя. В качестве теплоносителя могут выступать вода, пар, воздух, дымовые газы. Воздухонагреватели могут быть двух видов: воздухонагреватели прямого нагрева и. соответственно, непрямого. Первые отличаются тем, что продукты сгорания поступают в теплопроводы вместе с потоком горячего воздуха, тем самым КПД составляет 100%. Второй, напротив, имеет отдельный шланг, через который уходят продукты сгорания, но и КПД таким образом уменьшается до 82%. Существует несколько способов воздушного отопления промышленных зданий. Первый – система центрального отопления – установка воздухонагревателей вне здания, например, на крыше, и от него провести систему воздуховодов уже непосредственно в здании. Такой способ очень удобен тем, что в одной системе можно объединять и отопления, и кондиционирование, и вентиляцию помещения. Благодаря такому совмещению можно сократить финансовые затраты. Система отопления с воздуховодами часто используется в торговых центрах. Она позволяет контролировать не только температурный режим, но и качество воздуха. А если еще использовать такие дополнительные устройства, как увлажнители, электронные фильтры, антибактериальные лампы, вполне реально поддерживать собственный микроклимат в помещении.

   Другой способ отопления – местная система отопления. Главным источником тепла в таком случае являются воздухонегреватели, работающие по принципу тепловых пушек. Они устанавливаются по периметру помещения и включаются после сигнала специального датчика, когда температура опускается ниже требуемой.

      Несмотря на то, что было названо два способа отопления промышленных зданий, в настоящее время постепенно стал входить в обиход еще один вариант отопления, а именно: инфракрасное отопление. Все воздухонагреватели и теплогенераторы отапливают помещение путем конвекции. Учитывая то, что производственные здания обычно занимают большие площади, а люди, работающие там, занимают самую минимальную часть этой площади, то прогревать всё пространство не имеет смысла, особенно с экономической точки зрения. Смысл инфракрасного отопления заключается в том, что такие обогреватели работают локально. Они не нагревают окружающее их воздушное пространство, тепло передается только предметам, а те, в свою очередь, отдают это тепло воздуху. Таким образом происходит значительная экономия электроэнергии и более рациональное и эффективное распределение тепла.      

43. Освещение производственных помещений. Основные светотехнические параметры и характеристики.

Правильно устроенное освещение производственных помещений обеспечивает достаточную освещенность рабочих поверхностей, рациональное направление света и отсутствие резких теней и бликов на них. Недостаточное или неправильно устроенное освещение производственных помещений затрудняет работу, повышает утомляемость, снижает производительность труда, может явиться причиной травматизма, глазных заболеваний. Неправильно выбранные типы светильников, электропроводки и выключателей могут явиться причиной пожара и взрыва.

Освещение может быть естественным и искусственным.

Естественное освещение производственных помещений может осуществляться через фонари (световые проемы в покрытии здания) — верхнее освещение, через окна (световые проемы в стенах) — боковое освещение производственных помещений и быть комбинированным — через окна и фонари. Нормы минимальной освещенности помещений определяют коэффициентом естественной освещенности (КЕО), который зависит от вида выполняемой работы, ее точности, размера предмета или деталей, фона и контраста. Необходимую естественную освещенность определяют по формулам или приближенно по отношению площади световых проемов (окон, фонарей) к площади пола. При отсутствии недостаточного естественного освещения производственных помещений в светлое время суток одновременно используется и искусственный свет. Такое освещение называют совмещенным. Искусственное освещение производственных помещений устраивают тогда, когда естественное освещение в помещении отсутствует или его недостаточно, или по технологическим соображениям противопоказано. Оно может быть рабочим и аварийным. Рабочее искусственное освещение применяют для создания необходимой искусственной освещенности рабочей поверхности и вспомогательных площадей. Аварийное рабочее освещение производственных помещений устраивают в тех случаях, когда оно необходимо для продолжения работы или эвакуации людей из помещения при аварийном отключении рабочего освещения. Аварийное эвакуационное освещение производственных помещений применяют для эвакуации людей и материальных ценностей из помещений.

Освещение характеризуется количественными и качественными показателями. К количественным показателям относятся: световой поток Ф - часть лучистого потока, воспринимаемая человеком как свет; характеризует мощность светового излучения, измеряется в люменах (лм); сила света J - пространственная плотность светового потока; определяется как отношение светового потока dФ, исходящего от источника и равномерно распространяющегося внутри элементарного телесного угла dΩ, к величине этого угла; J=dФ/dΩ ; измеряется в канделах (кд); освещенность Е-поверхностная плотность светового потока; определяется как отношение светового потока dФ, равномерно падающего на освещаемую поверхность dS (м2), к ее площади: Е=dФ/dS , измеряется в люксах (лк); яркость L поверхности под углом α к нормали - это отношение силы света dJα, излучаемой, освещаемой или светящейся поверхностью в этом направлении, к площади dS проекции этой поверхности, на плоскость, перпендикулярную к этому направлению; L = dJα/(dScosa), измеряется в кд • м2.

Для качественной оценки условий зрительной работы используют такие показатели как фон, контраст объекта с фоном, коэффициент пульсации освещенности. Фон - это поверхность, на которой происходит различение объекта. Фон характеризуется способностью поверхности отражать падающий на нее световой поток. Контраст объекта с фоном k - степень различения объекта и фона-характеризуется соотношением яркостей рассматриваемого объекта (точки, линии, знака, пятна, трещины, риски или других элементов) и фона;

Коэффициент пульсации освещенности kE - это критерий глубины колебаний освещенности в результате изменения во времени светового потока.

44. Системы и виды производственного освещения.

45. Естественное освещение. Нормирование и расчет естественного освещения.

Естественное освещение производственных помещений может осуществляться через фонари (световые проемы в покрытии здания) — верхнее освещение, через окна (световые проемы в стенах) — боковое освещение производственных помещений и быть комбинированным — через окна и фонари. Нормы минимальной освещенности помещений определяют коэффициентом естественной освещенности (КЕО), который зависит от вида выполняемой работы, ее точности, размера предмета или деталей, фона и контраста. Необходимую естественную освещенность определяют по формулам или приближенно по отношению площади световых проемов (окон, фонарей) к площади пола. При отсутствии недостаточного естественного освещения производственных помещений в светлое время суток одновременно используется и искусственный свет. Такое освещение называют совмещенным. Естественное освещение не может быть единственным для большинства работ, так как резко меняется в зависимости от времени суток, сезона года и атмосферных условий. С учетом этого в качестве основной нормируемой величины принят коэффициент естественной освещенности е, представляющий собой отношение освещенности на рабочем месте Ер к наружной освещенности Ен, измеренной на открытой площадке, %:

е= 100%* Ер/Ен.

Коэффициент естественной освещенности (КЕО) не зависит от времени дня и других причин изменчивости естественного освещения. Гигиенические нормы, приведенные в СНиП, устанавливают требуемое значение КЕО в зависимости от точности работ и вида освещения

В основу установления разряда работ по степени точности положен наименьший размер объекта различения, т. е. минимальная величина предмета, который должен различать глаз при данной трудовой деятельности, например расстояние между двумя соседними штрихами при пользовании измерительным инструментом, диаметр точки (знака препинания) самого мелкого шрифта при чтении и письме и т. п.Равномерность освещения характеризуется отношением минимального значения Emin к его максимальному Emax на рабочей плоскости в пределах характерного разреза помещения. Расчет естественного освещения сводится к определению площади световых проемов. Наиболее простым является метод расчета с использованием светового коэффициента, равного отношению площади световых проемов к площади пола помещения Sn: a. = ES0/Sn. Следует отметить, что такой метод расчета применяют главным образом как проверочный.Более точно требуемую площадь световых проемов, обеспечивающую нормированные значения КЕО, определяют по формулам.

46. Искусственное освещение. Нормирование и расчет искусственного освещения.

Нормы требуемых уровней освещенности рабочих поверхностей установлены Строительными нормами и правилами в зависимости от принятых источников света и системы освещения. Этот документ регламентирует минимально допустимые значения освещенности и не запрещает применять повышенную освещенность в случаях, когда это целесообразно.

Работы всех видов разбиты на разряды, в основу градации которых положен минимальный размер объекта различения, и на подразряды, дифференцированные в зависимости от контраста между рассматриваемым предметом и фоном. Еще одним фактором, определяющим требования к освещению, является характеристика (коэффициент отражения) фона. Следует отметить, что, начиная с работ малой точности (VI— VIII разряды), нормируется освещенность только системы общего освещения, так как требуемые уровни освещенности относительно низки, а характеристика работ такова, что устраивать местное освещение нецелесообразно или невозможно. Нормы предусматривают увеличение табличных значений освещенности в следующих случаях: если расстояние от рассматриваемого объекта до глаз работающего больше 0,5 м, при выполнении напряженной зрительной работы в течение всего рабочего дня, при повышенной опасности травматизма, при специальных повышенных санитарных требованиях, при работе или производственном обучении подростков, при отсутствии в помещении естественного света. Освещенность следует увеличивать по мере уменьшения размера объекта различения, контраста рассматриваемого предмета с фоном и коэффициента отражения фона. Требуемые уровни освещенности можно снизить в производственных помещениях при кратковременном пребывании в них работающих или наличии оборудования, не требующего постоянного обслуживания.

Общие принципы расчета. Расчет искусственного освещения ведут в определенной последовательности. Прежде всего выбирают тип источника света, систему освещения и определяют норму освещенности. Затем, отдав предпочтение конкретному типу светильников и способу освещения, размещают их в помещении и рассчитывают освещенность в интересующих точках. После этого уточняют размещение и число светильников, определяют единичную мощность ламп. Определяя систему освещения, учитывают большую экономичность системы комбинированного освещения и в противовес этому большее совершенство в гигиеническом отношении системы общего освещения, так как последняя позволяет равномернее распределить световой поток и яркость в поле зрения. Расположение светильников в помещении при системе общего освещения зависит от высоты их подвеса над освещаемой плоскостью. Соблюдая оптимальное отношение расстояния между светильниками l к высоте их подвеса h, достигают необходимой равномерности освещения рабочих поверхностей.

Расчет методом удельной мощности. Данный метод применяют для ориентировочных или проверочных расчетов освещенности в помещениях при равномерном расположении в них светильников. Значения удельной мощности Ру зависят от многих переменных, но для случаев оптимального расположения светильников известного типа, заданной освещенности и высоты подвеса они известны. Их можно найти в справочной литературе.

В этом случае мощность одной лампы, Вт, рассчитывают по формуле:

Pл = РуSп/пл,

где Pу — удельная мощность светильников, необходимая для освещения помещений, Вт/м2; Sп — площадь пола, м2; пл — число ламп.

Полученный результат округляют. до ближайшего большего значения стандартной мощности лампы.

Расчет методом светового потока. Этот метод позволяет определить световой поток ламп при заданной освещенности рабочей поверхности, общем освещении с равномерным расположением светильников, с учетом отраженного стенами и потолком света. Метод светового потока непригоден в следующих случаях: при расчете направленного сконцентрированного светового потока; для локализованного, местного и наружного освещения; при негоризонтальности рабочих поверхностей.

По найденному значению Фл и таблице выбирают стандартную лампу, округляя полученное расчетное значение светового потока в большую сторону. Затем определяют электрическую мощность осветительной установки и действительную освещенность, лк:

Ед = Фл.N*η/(Sп*k*z),

где Фл.т — световой поток выбранной лампы, лм.

Расчет точечным методом. Данным методом определяют световой поток ламп, необходимый для создания заданной освещенности при любом расположении освещаемой поверхности и светильников в случаях, когда отраженный свет несуществен. Точечный метод применим для расчета как внутреннего, так и наружного освещения. В основе метода лежит известное светотехническое соотношение, определяющее зависимость освещенности поверхности Е, создаваемой точечным источником света, от силы света I, расстояния до поверхности r и угла падения света на эту поверхность α:

Е = I cos α/r2.

47.Освещение площадок предприятий и мест производства работ вне зданий.

Строительные нормы и правила-СНиП 23-05-95 ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ

Освещенность рабочих поверхностей мест производства работ, расположенных вне зданий, на этажерках вне зданий и под навесом, должна приниматься по таблице.

7.27. Горизонтальную освещенность площадок предприятий в точках ее минимального значения на уровне земли или дорожных покрытий следует принимать по таблице.

7.28. Наружное освещение должно иметь управление, независимое от управления освещением внутри зданий.

Там, где улицы и дороги в промышленных зонах используются только в короткие промежутки времени (ночью), например, при сменной работе для снижения яркости или освещенности дорожного покрытия после снижения интенсивности движения допустимо применять 2-ламповые светильники с отключением одной из ламп или автоматические регуляторы светового потока ламп.

7.29. Для ограничения слепящего действия установок наружного освещения мест производства работ и территорий промышленных предприятий высота установки светильников над уровнем земли должна быть:

а) для светильников с защитным углом менее 15° - не менее указанной ;

б) для светильников с защитным углом 15° и более - не менее 3,5 м.

Допускается не ограничивать высоту подвеса светильников с защитным углом 15° и более (или с рассеивателями из молочного стекла без отражателей) на площадках для прохода людей или обслуживания технологического (или инженерного) оборудования, а также у входа в здание.

7.30. Высота установки светильников рассеянного света должна быть не менее 3 м при световом потоке источника света до 6000 лм и не менее 4 м при световом потоке более 6000 лм.

7.31. Отношение осевой силы света I_МАКС , кд, одного прибора (прожектора или наклонно расположенного осветительного прибора прожекторного типа) к квадрату высоты установки этих приборов H, м, в зависимости от нормируемой освещенности не должно превышать значений.

48. Источники света. Типы ламп и светильников.

На производстве – эл. лампы, которые делятся на лампы накаливания, галогенные и газоразрядные.

В лампах накаливания свечение возникает в результате нагрева вольфрамовой нити до высоких t. Виды ламп накаливания: В-вакуумные, Г-газонаполненные, Б-биспиральные, К-криптоновые.

(+) простота в изготовлении, малая инертность при включении, отсутствие доп пусковых устройств.

(–) малая световая отдача до 20 лм/Вт, малый срок службы до 1000 ч, в спектре преобладают желто-красные тона.

Галогенные лампы – накаливание нити происходит в парах/газе галогенов. (+) срок службы до 3000ч, светоотдача до 30 лм/Вт.

Газоразрядные – излучают свет в результате эл. разрядов в парах/газах.

• лампы низкого давления (люминесцентные) создают свет, приближающийся к естественному, они более экономичны и благоприятны с гигиенической точки зрения.

(+) срок службы увеличивается до 10тыс.ч., светоотдача до 75 лм/Вт., t поверхности лампы не превышает t Окр. Среды более 5С.

– пульсации светового потока, дороговизна и сложная схема подключения, чувствительность к t окружающей среды.

В зависимости от состава люминофора лампы делятся на: лампы белого света ЛБ, лампы дневного света ЛД, лампы теплого белого света ЛТБ, лампы холодного белого света ЛХБ, лампы дневного света с правильной цветопередачей ЛДЦ.

• лампы высокого давления. Дуговые ртутные лампы ДРЛ use для освещения открытых пространств и в помещениях с высотой потолков не менее 6 м.

(+) большая мощность до 1000Вт и более, работают при любых t, могут use в любых светильниках вместо ламп накаливания; - относительно длинное время разгона.

49. Освещение помещений взрывоопасных производств.

В некоторых производствах, где имеет место, выделение в воздух рабочих помещений паров или пылей легковоспламеняющихся или взрывоопасных веществ, применяются взрывобезопасные светильники. Они герметично закрывают источник света и тем самым предохраняют его от контакта с воспламеняющимися или взрывоопасными веществами. Для освещения вытяжных шкафов, боксов или других ограниченных пространств, где производятся работы с такими веществами, используется прожекторное освещение. Прожектора устанавливаются за пределами этих пространств (иногда даже за пределами цеха, снаружи), а световой потoк от них через остекленное окно или другой остекленный проем направляется в рабочее пространство, освещая его.

Электрическое освещение взрывоопасных производств нормируется по освещенности рабочих поверхностей, при этом равномерность освещения рассчитывают преимущественно по методу удельной установленной мощности. Сущность этого метода заключается в том, что для данного помещения выбирают удельную мощность освещения в вт/м?, а затем определяют общую мощность ламп, необходимую для освещения, путем умножения удельной мощности на площадь помещения. Полученную общую мощность ламп делят на их число, находя тем самым мощность одной лампы, и затем подбирают ближайшую по мощности лампу. Число ламп определяют размерами помещения, их расположением и мощностью стандартных ламп.

Следует также учитывать тип светильника, расчетную высоту подвеса и наименьшую допустимую освещенность площади, подлежащей освещению. Расстояние светильников от стен выбирают в пределах 0,3—0,5 м, а длину подвеса от потолка — не более 1,5 м. Во взрывоопасных помещениях и наружных установках необходимо применять взрывозащищенные светильники только в исполнении, которое соответствует классу помещения, категории и группе взрывоопасных смесей с учетом эксплуатационных и экономических соображений. Монтаж светильников для стационарной установки состоит из подготовительных работ (ревизия и зарядка кабелем), установки и крепления по месту. Зарядка светильников производится проводами с термостойкой изоляцией (например, ПРКС). Марки проводов для зарядки светильников оговорены в проекте или в инструкции по монтажу и эксплуатации. Длина провода для зарядки определяется расстоянием от светильника до ближайшего разветвительного фитинга плюс 100 мм, необходимых для соединения в фитинге, и 80—150 мм (в зависимости от типа светильника) для подсоединения к контрольным зажимам светильника. Монтажу не подлежат взрывозащищенные светильники, у которых имеются трещины, раковины, неисправны патроны и т. п.

При освещении помещений со взрывоопасной средой, для которой не имеется светильников соответствующих типов, рекомендуется выполнять освещение общепромышленными светильниками одним из следующих способов:

через закрытые наглухо окна снаружи здания, причем в случае одинарного остекления окон устанавливают взрывозащищенные светильники с защитными стеклами или стеклянными колпаками;

через специально устроенные в стене нити с двойным остеклением и естественной вентиляцией свежим воздухом;

через фонари специального типа со светильниками в полке с двойным остеклением и устройством естественной вентиляции фонарей свежим воздухом.

50. Электрический ток. Воздействие электрического тока на человека. Виды электротравм.

Электрический ток, проходя через тело человека, оказывает тепловое, химическое и биологическое воздействия. Тепловое действие проявляется в виде ожогов участков кожи тела, перегрева различных органов, а также возникающих в результате перегрева разрывов кровеносных сосудов и нервных волокон. Химическое действие ведет к электролизу крови и других, содержащихся в организме растворов, что приводит к изменению их физико-химических составов, а значит, и к нарушению нормального функционирования организма. Биологическое действие электрического тока проявляется в опасном возбуждении живых клеток и тканей организма. В результате такого возбуждения они могут погибнуть.

Воздействие электрического тока на организм человека

Электрический ток, действуя на организм человека, может привести к различным поражениям: электрическому удару, ожогу, металлизации кожи, механическому повреждению. Электрический удар ведет к возбуждению живых тканей; В зависимости от патологических процессов, вызываемых поражением электротоком, принята следующая классификация тяжести электротравм при электрическом ударе:

  1. электротравма I степени — судорожное сокращение мышц без потери сознания;

  2. электротравма II степени — судорожное сокращение мышц с потерей сознания,"

  3. электротравма III степени — потеря сознания и нарушение функций сердечной деятельности или дыхания (не исключено и то и другое);

  4. электротравма IV степени — клиническая смерть.

Степень тяжести электрического поражения зависит от многих факторов: сопротивления организма, величины, продолжительности действия, рода и частоты тока, пути его в организме, условий внешней среды.

Исход электропоражения зависит и от физического состояния человека. Если он болен, утомлен нли находится в состоянии опьянения, душевной подавленности, то действие тока особенно опасно. Безопасными для человека считаются переменный ток до 10 мА и постоянный — до 50 мА.

51. Факторы, влияющие на тяжесть поражения электрическим током.

Факторы, влияющие на исход воздействия ЭТ

• Эл.сопротивление тела человека – 1000 Ом

• I, проходящего через человека U

•длительность протекания тока

•род и частота тока

•пути протекания тока по телу

•индивид. особенности человека условия ОС.

Человек начинает ощущать воздействие ЭТ при величинах 0,6-1,5 мА переменного тока с частотой 50 гц и при 5-7 мА постоянного тока - пороговый ощутимый ток, вызывает легкое покалывание и слабый зуд - при переменном токе, ощущение нагрева кожи на участке касания токоведущей части - при постоянном токе. •Ток, который не вызывает никаких вредных влияний на организм человека при длительном воздействии (в несколько часов) называется безопасным. При ~10-15 мА и - 50-60 мА человек не может самостоятельно освобождаться от токоведущих частей - пороговый неотпускающий ток. ~ 100 мА и более, - 300 мА и более при времени прохождения через человека 1-2 сек считаются смертельными - пороговыми фибрилляционными токами, вызывают фибрилляцию сердца, т.е. хаотически быстрые и разновременные сокращения сердечной мышцы. - в 3-4 раза менее опасным, чем ~ 50 гц при U=250-300 в. Наиболее опасным считается переменный ток с частотой от 20 до 100 гц.

52.

ЭЛЕКТРОТРАВМА - это травма, вызванная воздействием электрического тока, электрической дуги или электромагнитного поля.

Классификация причин электротравм:

1). Технические причины:

- деффекты документации, изготовление монтажа и ремонта электроустановок;

- неисправности электроустановок и защитных средств, возникшие в процессе эксплуатации;

- несоответствие электроустановок и защитных средств к условиям применения;

- использование электроустановок и защитных средств, не принятых в эксплуатацию;

- использование защитных средств с истекшими сроками периодических испытаний.

2). Организационно-технические мероприятия:

- ошибки в производственных отключениях электроустановок ( отключение электроустановки не со всех сторон);

- ошибочная подача напряжения на электроустановку, где работают люди;

- отсутствие ограждений и предупредительных плакатов безопасности у места работы электроустановок;

- допуск к работе на токоведущие части без проверки отсутствия напряжения на них;

- нарушение порядка наложения, снятия и хранения переносных заземлений (куски медного провода, накладываемые на токоведущие части в месте работы, фазы перемыкаются, один конец заземляется ).

3). Организационные причины ( не выполнение организационных мероприятий безопасности ):

- недостаточная обученность персонала;

- неправильное оформление работы;

- несоответствие работы заданию;

- нарушение порядка допуска бригады к работе;

- некачественный надзор во время работы.

4). Организационно-социальные причины:

- допуск к работе лиц, моложе 18 лет;

- привлечение к работе лиц, не оформленных приказом о зачислении на работу;

- несоответствие выполняемой работы специальности;

- выполнение работ в сверхурочное время;

- нарушение производственной дисциплины;

- игнорирование правил безопасности квалифицированным персоналом.

53

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]