Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
STATISTIKA_SHARIKOV V.I.doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
5.29 Mб
Скачать

Распределение сотрудников туристской фирмы по уровню образования*

Уровень

образования

Число

сотрудников, чел

Среднее

2

Среднее профессиональное

3

Высшее

5

Итого

10

*Цифры условные

Ряды распределения, построенные по количественному признаку, называются вариационными. Например, распределение туристских фирм по численности сотрудников, объему реализации и т.д.

Вариационные ряды по способу построения и характеру вариации подразделяются на дискретные и интервальные.

Дискретные вариационные ряды (табл. 3.4) построены по дискретному (прерывному) признаку, который принимает только отдельные (дискретные), как правило, целые значения (например, число сотрудников фирмы, количество ее офисов).

Таблица 3.4

Распределение туристских фирм города по числу сотрудников*

Число сотрудников

(хi)

Количество фирм

(fi)

Удельный вес

в общей численности, %

2

5

8,77

3

9

15,79

4

20

35,09

5

15

26,31

6 -

8

14,04

Итого

57

100,00

*Цифры условные

Интервальные вариационные ряды (табл. 3.5) строятся по непрерывному признаку, который может принимать в определенных пределах любые (в том числе и дробные) промежуточные значения (например, объемы выручки, прибыли фирмы).

Таблица 3.5

Распределение сотрудников туристского предприятия по стажу работы*

Стаж работы, лет

(хi)

Количество

сотрудников, чел.

(fi)

Накопленная

частота, Fi

- 3

4

4

3 – 6

6

10

6 – 9

8

18

9 – 12

1

19

12 - 15

1

20

Итого

20

-

*Цифры условные

Вариационные ряды распределения состоят из двух элементов: вариантов и частот.

Варианты i) - это отдельные значения признака, которые он при­нимает в вариационном ряду распределения.

Частоты (fi) - числен­ность отдельных вариантов или каждой группы вариационно­го ряда. Частоты показывают, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот определяет численность (объем) всей совокупности

Частоты, выраженные в долях единицы или в про­центах к итогу, называются частостями wi:

.

Накопленная (кумулятивная) частота Fi – частота нарастающим итогом. Накопленная частота для данного варианта или для верхней границы данного интервала определяется последовательным прибавлением (накапливанием) к частоте первого интервала частот fi последующих интервалов. Она показывает число единиц совокупности, у которых значение признака не больше данного (табл. 3.5).

Аналогично, если суммировать частости wi, то получают накопленные частости pi. Они позволяют сравнивать распределения по одному и тому же признаку в разных по объему совокупностях.

В рядах с неравными интервалами для правильного представления о характере распределения рассчитывают абсолютную и относительную плотности распределения (табл. 3.6).

Абсолютная плотность распределения – это частота, приходящаяся на единицу длины интервала Относительная плотность распределения – частость, приходящаяся на единицу длины интервала, где hi – длина i –го интервала.

Таблица 3. 6

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]