Скачиваний:
35
Добавлен:
10.05.2014
Размер:
352.26 Кб
Скачать

3.4. Формирование пучков заряженных частиц и плазменных потоков.

(или 3.2?)

Электронные пучки

Под электронными пучками понимают направленные потоки электронов, попе­речные размеры которых значительно меньше их длины. Электронные пучки впервые были обнаружены в газовом разряде, происходящем при пониженном давлении. При тлеющем разряде положительными ионами с катода выбивается боль­шое число электронов. Если разряд происходит в трубке при очень больших разрежениях, то средняя длина свободного пробега электронов увеличивается и катодное темное пространство расширяется. Электроны, выбитые с катода положительными ионами, движутся почти без столкновений и образуют ка­тодные лучи. Эти лучи распространяются нормально к поверхности катода. Если в аноде электронной лампы сделать отверстие, то часть электронов, уско­ренных электрическим полем, пролетит в отверстие, образуя за анодом элект­ронный пучок.

Плазменные потоки

Плазменные ускорители, устройства для получения потоков плазмы со скоростями 10-103 км/сек и более, что соответствует кинетической энергии ионов от ~10 эв до 105-106 эв. На нижнем пределе энергии П. у. соседствуют с генераторами низкотемпературной плазмы - плазматронами, на верхнем - с коллективными ускорителями заряженных частиц (см. Ускорения заряженных частиц коллективные методы). Как правило, П. у. являются ускорителями полностью ионизованной плазмы, поэтому процессы возбуждения и ионизации, а также тепловые процессы играют в них, в отличие от плазматронов, вспомогательную роль.

Плазменные потоки с большими скоростями можно получить разными способами, например воздействием лазерного луча на твёрдое тело. Однако к собственно П. у. относят лишь устройства (рис. 1), в которых ускорение и обычно одновременное приготовление плазмы осуществляются за счёт электрической энергии с помощью одного или нескольких специальных электрических разрядов.

В отличие от ускорителей заряженных частиц, в канале П. у. находятся одновременно частицы с зарядами обоих знаков - положительные ионы и электроны, т. е. не происходит нарушения квази-нейтральности. Это снимает ограничения, связанные с объёмным (пространственным) зарядом (см. Ленгмюра формула), и позволяет получать плазменные потоки с эффективным током ионов в несколько млн. а при энергии частиц ~ 100 эв. При ионных токах ~ 1000 а уже достигнута энергия частиц в несколько кэв.

Из П. у. ионы и электроны выходят практически с равными направленными скоростями, так что основная энергия потока приходится на ионы (вследствие их большой массы). Поэтому П. у. - это электрические системы, ускоряющие ионы в присутствии электронов, компенсирующих объёмный заряд ионов.

Механизм ускорения. При анализе рабочего процесса в П. у. плазму можно рассматривать и как сплошную среду, и как совокупность частиц (ионов и электронов). В рамках первого подхода ускорение плазмы обусловлено перепадом полного (ионного и электронного) давления p = pi + pe и действием силы Ампера FAмп (см. Ампера закон), возникающей при взаимодействии токов, текущих в плазме, с магнитным полем, FAмп ~ [jB], где j - плотность тока в плазме, В - индукция магнитного поля.

В рамках второго подхода ускорение ионов может происходить в результате: 1) действия электрического поля Е, существующего в плазменном объёме; 2) столкновений направленного потока электронов с ионами ("электронного ветра"); 3) столкновений ионов с ионами, благодаря которым энергия хаотического движения ионов переходит в направленную (тепловое или газодинамическое ускорение ионов). Наибольшее значение для П. у. имеет электрическое ускорение ионов, меньшее - два последних механизма.

Соседние файлы в папке 3.Физические установки