Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Чистовик.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
119.3 Кб
Скачать

10

Вступ

У зв’язку з і змінами в системі освіти України, які відбулися на порозі нового тисячоліття, найактуальнішим питанням на сьогоднішній день, згідно з Концепцією 12 – річної школи, стало питання всебічного розвитку дитячої особистості, на основі реалізації її природних можливостей, врахування інтересів і потреб.

Широкі можливості для розвитку розумових здібностей молодших школярів, а саме: сприймання, пам’яті, мислення, уяви та уявлення, волі, уваги, створює вивчення математики. Ця наука допомагає учням доказово міркувати та пояснювати свої дії, логічно мислити та знаходити вихід із будь-якої ситуації. Важко знайти таку галузь людської діяльності, де можна було б обійтися без математичних знань, причому з кожним роком діапазон їх практичних застосувань все збільшується.

Зважаючи на те, що основною метою сучасної школи, як зазначає О. Я. Савченко, є підготовка учнів до життя, до суспільно – корисної праці, особливої ваги слід надавати тим питанням програми, з якими її вихованці не раз зустрічатимуться у своїй життєдіяльності, і одним з цих питань курсу математики є вивчення геометричного матеріалу.

Геометрія, як наука, зародилася багато тисячоліть тому у зв’язку з потребою виміру землі. Отже, в перекладі з грецької слово «геометрія» означає «землемірство».

Вивчаючи геометрію, діти знайомляться з різними просторовими формами та тілами, геометричними фігурами та їх властивостями, набирають навичок вимірювання, побудови, конструювання, малювання.

Особлива роль в ознайомленні учнів з даними питаннями відводиться школі І ступеня, так як саме молодшим школярам притаманні образність мислення, гострота уявлень і сприймань. Елементарні геометричні знання, здобуті в початкових класах, стають основою, на якій зводиться у майбутньому точна і прекрасна будівля науки геометрії. Щоб ця будівля була міцною і надійною, необхідно, щоб поняття, терміни, уявлення, здобуті на початкових етапах навчання, стали міцною опорою для їх розширення і поглиблення.

Практика початкової ланки загальноосвітньої школи, бесіди з учителями та аналіз їхніх відповідей на анкети дають підставу стверджувати, що вивченню геометричної пропедевтики відводиться дуже мало часу та уваги. Дане питання потребує глибоких методичних розробок та доопрацювань.

Тому темою курсової роботи ми обрали «Формування геометричних уявлень і понять в учнів початкових класів».

Мета курсової роботи – розкрити теоретичні основи та методику організації засвоєння геометричного матеріалу учнями 1 – 4 класів.

Об’єкт курсової роботи: навчальний процес математики в початкових класах.

Предмет курсової роботи: методика організації засвоєння геометричного матеріалу учнями 1 – 4 класів

Для досягнення мети в курсовій роботі вирішено такі завдання:

  • розкрити теоретичні аспекти вивчення геометричного матеріалу в початковій школі;

  • здійснити загальну характеристику геометричної пропедевтики;

  • Проаналізувати програмні вимоги щодо рівня геометричних знань учнів 1 – 4 класів;

  • розглянути методичні особливості організації засвоєння геометричного матеріалу учнями початкових класів;

  • висвітлити поняття кута, багатокутника, кола і круга, а також уявлення про простір та лінії і відрізки в початкових класах.

В роботі дано загальну характеристику геометричної пропедевтики та розкрито програмні вимоги щодо рівня геометричних знань учнів 1 – 4 класів на кінець навчального року;

проведено аналіз діючої педагогічної практики відповідно до складових геометричної пропедевтики та розроблено ряд завдань для покращення якості вивчення геометричного матеріалу.

Даний підхід, на наш погляд, дозволяє найбільшою мірою забезпечити формування в учнів початкових класів геометричних уявлень і понять, та їх підготовку до вивчення систематичного курсу геометрії в 7 – 11 класах.

Розділ і. Теоретичні аспекти вивчення геометричного матеріалу в початковій школі

1.1. Загальна характеристика геометричної пропедевтики

Як відомо, навчальному предмету «Геометрія», що вивчається в 7 – 11 класах загальноосвітньої школи, передує геометрична пропедевтика в початковій школі.

Учні 1 – 4 класів знайомляться з геометричними фігурами, їх найважливішими властивостями, вчаться виконувати побудови, визначати довжини, площі, що потрібно, насамперед, для того, щоб підготувати дітей до вивчення систематичного курсу геометрії.

В початковій школі геометричний матеріал не складає окремих розділів курсу математики; він пов’язується з арифметичним матеріалом та з вивченням величин і, рівномірно розподілений по всьому курсі, зустрічається майже на кожному уроці.

Геометрична пропедевтика поділяється на такі складові: розвиток просторових уявлень молодших школярів, формування уявлень про лінії і відрізок, креслення і вимірювання довжин відрізків, ознайомлення з багатокутниками і кругом, вимірювання периметра і площ багатокутників, спостереження геометричних тіл і введення їх назв.

На думку психологів: «Рівень розвитку просторового мислення та уявлень вважається одним з основних критеріїв математичного розвитку особистості» [8], а А. Пуанкаре визначав дані процеси, як найбільш істотні засоби людського спілкування [5]. На сьогоднішній день не виникає жодних сумнівів, що питання розвитку просторового мислення та уявлень в молодшому шкільному віці заслуговує великої уваги, адже, як довели психологічні дослідження, саме даний період є сенситивним для формування цих процесів, що пов’язано з перевагою в молодших школярів образних компонентів мислення їх розумової діяльності. У зв’язку з цим і виникла ідея побудови курсу, який базується на стадіях: образ – уявлення – система уявлень - передпоняття, які дають можливість уявити підготовку учнів до виходу в геометричний простір (простір з постійно змінною точкою відліку) та визначити шляхи подальшого формування понять. Тому в підході до вивчення певного геометричного поняття існує чітка система аналізу, яка забезпечує дотримання принципу наступності: що дітям уже відомо про це поняття з дошкільного періоду їхнього життя, або з попередніх уроків математики в школі, що вони повинні вивчити про це поняття зараз; як воно з часом буде ускладнюватися в початковій школі і на який рівень знань про нього діти повинні вийти, закінчивши початкову школу; як це поняття трактується в 5 – 6 класах та в систематичному курсі геометрії [11]. Такий аналіз допоможе правильно активізувати попередні знання, визначити опору та новизну даного матеріалу, і, в результаті, підійти до способу його пояснення.

Не означуваними поняттями у курсі геометрії є «точка», «пряма лінія», «площина», на основі яких базуються інші геометричні поняття. Окрім прямої, учні початкових класів знайомляться з кривою та ламаною лініями.

Одним з основних у 1 – 4 класах є поняття «відрізок», яке вводиться через інше «частина прямої». У посібнику В. О. Погорєлова відрізком називається частина прямої, яка складається з усіх її точок, які лежать між двома даними. Ці точки названо кінцями відрізка. Питання, чи належать вони самому відрізку, залишається нерозкритим до 6 класу, а молодші школярі повинні знати, що кінці відрізка тільки задають його.

Майже з перших уроків математики в початкових класах учні стикаються з вимірюванням відрізків. Не володіючи спеціальною математичною термінологією, діти вже готуються до усвідомлення того, що кожен відрізок має певну довжину, більшу від нуля, та що довжина відрізка дорівнює сумі довжин тих частин, на які він розбивається будь-якою його точкою.

У другому класі починається знайомство молодших школярів з такою геометричною фігурою, як кут. Оскільки, вони ще не знайомі з променем, то означення кута для них не дається, а уявлення про нього у дітей формується в основному під час вивчення багатокутників. Як свідчать педагогічні дослідження, кут учні початкових класів розуміють як «відірваний кут багатокутника». Проте, міцно закріпившись в дитячій уяві, таке розуміння створює труднощі під час вивчення кута в 5 класі. Ним тут називають фігуру, утворену двома променями, що мають спільний початок. Така неузгодженість вимагає уточнення уявлення про кут вже з перших уроків ознайомлення з ним.

Ще однією проблемою, з якою стикаються молодші школярі, - порівняння кутів за величиною. Звичайно, у початкових класах не вимагається знаходити величину кутів у градусах, користуючись транспортиром. Але учні 2 класу ознайомлюються з прямим кутом, а тому для порівняння використовують прямий кут косинця.

Аналіз програм і підручників свідчить, що учні початкових класів досить багато дізнаються про багатокутники. Враховуючи те, що ще з дошкільного віку дітям знайомі трикутник, чотирикутник, квадрат, шкільний підручник для першого класу оперує цими фігурами. Моделі і зображення геометричних фігур застосовуються як дидактичний матеріал для вивчення чисел і арифметичних дій над ними, для розв’язування задач.

У 1 – 4 класах учні розглядають різні види фігур, уточнюють уявлення про ці фігури, вчаться розпізнавати їх у різних ситуаціях, на малюнках, моделях та навколишніх предметах, визначати знайомі їм геометричні фігури у фігурах складної конфігурації, порівнювати їх, конструювати, обчислювати периметр багатокутників та площу прямокутника і квадрата.

У зв’язку з тим, що молодші школярі не лише розглядають та порівнюють різні фігури, а й вчаться їх зображати, саме на цьому етапі в них повинні сформуватися елементарні графічні уміння і навички роботи з креслярськими інструментами: олівцем, лінійкою та циркулем.

З метою послідовного ознайомлення із вивченням геометричних понять та їх подальшим розвитком в межах початкової школи пропонуємо чіткий аналіз програм для 1 – 4 класів.