
Лекция 7.
БИОТЕХНОЛОГИЯ ПРОИЗВОДСТВА МЕТАБОЛИТОВ
1. Классификация продуктов биотехнологических производств
Спектр продуктов, образующихся методами биотехнологии, необычайно широк и разнообразен. Одноклеточные организмы используют для получения биомассы, являющейся источником кормового белка. Клетки, особенно в иммобилизованном состоянии, выступают в роли биологических катализаторов для процессов биотрансформации.
Процессами биотрансформации называют реакции превращения исходных органических соединений (предшественников) в целевой продукт с помощью клеток живых организмов или ферментов, выделенных из них. В последние годы высокая специфичность процессов биотрансформации и эффективность иммобилизованных ферментов нашли широкое применение для крупномасштабного производства аминокислот, антибиотиков, стероидов и других промышленно важных продуктов.
Продуктами биотехнологических производств являются природные макромолекулы — белки, ферменты, полисахариды.
Первичные метаболиты необходимы для роста клеток. К ним относятся структурные единицы биополимеров — аминокислоты, нуклеотиды, моносахариды, а также витамины, коферменты, органические кислоты и другие соединения. Вторичные метаболиты (антибиотики, пигменты, токсины) — низкомолекулярные соединения, не требующиеся для выживания клеток и образующиеся по завершении фазы их роста.
Центральное звено биотехнологического процесса — живая клетка, в которой одномоментно синтезируется великое множество разнообразных соединений. В норме обмен веществ в клетке осуществляется по принципам строжайшей экономии, что обеспечивается сложнейшей системой регуляции обмена веществ. Задача биотехнолога состоит в обеспечении сверхсинтеза одного из продуктов метаболизма, что достигается как путем изменения генетической программы организма, так и посредством нарушения регуляторных систем метаболизма в нем.
2. Биотехнология получения первичных метаболитов
2.1. Производство аминокислот
Среди соединений, получаемых биотехнологическими методами, аминокислоты занимают первое место по объему производства и второе место по стоимости, уступая по последнему параметру лишь антибиотикам. Объем мирового производства аминокислот составляет более 500 тыс. т в год, из которых 300 тыс. т приходится на глутамат натрия, 100 тыс. т на лизин и 140 тыс. т на метионин. Однако указанный объем — лишь небольшая доля от требуемого количества аминокислот. По данным ВОЗ, потребность человечества всего лишь в четырех незаменимых аминокислотах составляет, млн т: для лизина — 5, метионина — 4, треонина — 3,7 и триптофана — 2.
Аминокислоты — структурные единицы белков. Природные аминокислоты вовлечены в биосинтез ферментов, ряда гормонов, витаминов, антибиотиков, алкалоидов, токсинов и других азотсодержащих соединений (пурины, пиримидины, гем и пр.). В организме животного практически половина белковых аминокислот не синтезируется. Они называются незаменимыми аминокислотами и должны поступать в организм с пищей. Недостаток каждой из этих аминокислот в пищевом или кормовом рационе приводит к нарушению обмена веществ, замедлению роста и развития.
Помимо применения в качестве пищевых добавок, приправ и усилителей вкуса аминокислоты используют как сырье в химической, парфюмерной и фармацевтической промышленности и при производстве ряда других веществ:
глицин — подсластитель, антиоксидант, бактериостатик;
аспарагиновая кислота — усилитель вкуса, сырье для синтеза аспартама;
глутаминовая кислота — усилитель вкуса, препарат для лечения психических заболеваний;
гистидин — противовоспалительное средство;
метионин — пищевая и кормовая добавки;
цистеин — фармацевтический препарат;
треонин и триптофан — пищевые и кормовые добавки;
фенилаланин — сырье для получения аспартама;
лизин — пищевая и кормовая добавки, сырье для получения искусственных волокон и пленок.
В промышленных масштабах белковые аминокислоты получают:
гидролизом природного белоксодержащего сырья;
химическим синтезом;
микробиологическим синтезом;
биотрансформацией предшественников аминокислот с по мощью микроорганизмов или выделенных из них ферментов (хи мико-микробиологический метод).
Существенный недостаток методов химического синтеза аминокислот состоит в получении целевых препаратов в виде рацемической смеси D- и L-стереоизомерных форм. Подавляющее большинство природных аминокислот относится к L-ряду. D-a-ами-нокислоты обнаружены лишь в составе гликопротеинов клеточных стенок бактерий, антибиотиков и некоторых токсинов.? Проницаемость L-аминокислот в клетке в 500 раз превышает таковую ее антипода. Стереоспецифичны также транспорт и метаболизм аминокислот. Исключением в этом отношении является лишь ме-тионин, метаболизм которого нестереоизбирателен, благодаря чему данная аминокислота получается преимущественно путем химического синтеза. Разделение рацематов других аминокислот — дорогая и чрезвычайно трудоемкая процедура.
Наиболее перспективен и экономически выгоден микробиологический синтез аминокислот. Более 60 % всех производимых в настоящее время промышленностью высокоочищенных препаратов белковых аминокислот получают именно этим способом, главное преимущество которого в сравнении с методами химического синтеза состоит в возможности получения L-аминокислот на основе возобновляемого сырья.
Перспективные штаммы продуцентов постоянно улучшают посредством селекции мутантов с измененной генетической программой и регуляторными свойствами. Распространенные объекты селекции продуцентов — микроорганизмы, относящиеся к родам Brevibacterium, Micrococcus, Corynebacterium, Arthrobacter (табл. 1).
Таблица 1
Микроорганизмы — продуценты аминокислот
(по Н. Б. Градовой и О. А. Решетник, 1987)
Аминокислота |
Микроорганизмы |
Аргинин |
Е. coli, Bacillus subtilis, Corynebacterium glutamicum, |
|
Brevibacterium flavum, Serratia marcescens |
Гистидин |
B.flavum, C. glutamicum, S. marcescens, виды Steptomyces |
Изолейцин |
B. flavum, C. glutamicum, B. subtilis, S. marcescens |
Лейцин |
Brevibacterium lactofermentum, S. marcescens, C. glutamicum |
Лизин |
B. flavum, C. glutamicum |
Фенилаланин |
B. flavum, C. glutamicum |
Пролин |
B. flavum |
Серии |
C. glutamicum |