Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Л-13. Применение Генной инженерии.doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
304.64 Кб
Скачать

2.2. Применение методов генетической инженерии для улучшения аминокислотного состава запасных белков растений

Решение проблемы создания новых форм растений подразуме­вает в первую очередь повышение качества синтезируемых расте­нием продуктов, которые определяют его питательную и техни­ческую ценность. В основном это касается запасных белков.

В большинстве случаев запасные белки растений имеют несба- лансированный для питания человека и животных аминокислотный состав.

Операции по получению трансгенных растений с улучшенным аминокислотным составом белка разделены на ряд этапов:

1) клонирование генов запасных белков;

2)выявление последовательностей ДНК, определяющих данный механизм;

3) целенаправленное из­менение последовательностей генов запасных белков для улучше­ния аминокислотного состава;

4) создание векторов, содержащих измененный ген;

5) введение модифицированных генов в растения.

Так, введение в геном пшеницы модифицированного гена проламина привело к активному синтезу модифицированного белка, а также повлияло на состав и уровень соответствующих запасных белков. В итоге улуч­шилось хлебопекарное качество пшеничной муки.

2.3. Генно-инженерные подходы к решению проблемы усвоения азота

Азот — один из самых необходимых элементов для растений. Его недостаток в почве или питательном субстрате часто приводит ра­стение к гибели, поэтому в первую очередь необходимо внесение в почву азотных удобрений. Однако их производство требует очень больших энергетических затрат, поэтому оно дорогостояще. Сто­имость азотных удобрений в 6 раз выше стоимости фосфорных удоб­рений и в 16 раз выше стоимости калийных удобрений. При этом растения используют только от 30 до 70 % внесенных в почву до­ступных форм азота, остальное просто вымывается из почвы, за­грязняя окружающую среду. Гораздо более естественно и доступно снабжение растений азотом путем его биологической фиксации.

Фиксация атмосферного азота (диазотрофность) — свойство прокариотических организмов.

Азотфиксирующие организмы де­лятся на симбиотические (90 %) и свободноживущие (10 %). Фик­сация атмосферного азота связана преимущественно с симбиотическими микроорганизмами. В настоящее время известны четыре основные системы симбиоза, имеющие большое значение не толь­ко для естественных сообществ, но и для сельского хозяйства, лесоводства. Это Rhizobia — бобовые растения, Azolla-Anabaena — рис, Actinomyces — деревья, Spirillum — травы. Атмосферный азот фиксируется благодаря уникальному ферменту — нитрогеназе.

В 1960 г. американские исследователи показали, что нитрогеназа сохраняет свою активность в бесклеточных экстрактах Clostridium pasteurianum. Это послужило толчком для начала активных иссле­дований биохимии азотфиксации, структуры и механизма дей­ствия нитрогеназы. К 1981 г. нитрогеназа была выделена из 36 ви­дов микроорганизмов.

В настоящее время внимание ученых привлекают проблемы вве­дения генов азотфиксации в клетки растений; создания ризоценозов между небобовыми растениями (особенно злаками) и азотфиксирующими организмами; повышения мощности корневой систе­мы бобовых растений для увеличения на ней количества клубень­ков. Кроме того, предполагается создание новых азотфиксирующих систем путем введения азотфиксирующих микроорганизмов в каллусные ткани растений с поcл едущим образованием из них растений-регенерантов, а также повышение эффективности фиксации азота путем воздействия на гены, контролирующие этот процесс.