
- •Применение генной инженерии
- •1. Использование генетической инженерии в животноводстве
- •Назначение:
- •1.1 Получение инсулина на основе методов генетической инженерии
- •1.2. Синтез соматотропина
- •1.3. Получение интерферонов
- •2. Генная инженерия растений.
- •2.1. Получение трансгенных растений
- •2.2. Применение методов генетической инженерии для улучшения аминокислотного состава запасных белков растений
- •2.3. Генно-инженерные подходы к решению проблемы усвоения азота
- •2.4. Устойчивость растений к фитопатогенам
- •2.5. Устойчивость растений к гербицидам
- •2.6. Устойчивость растений к насекомым
Лекция 4.
Применение генной инженерии
1. Использование генетической инженерии в животноводстве
Применение методов генетической инженерии в животноводстве открывает перспективу изменения ряда свойств организма: повышение продуктивности, резистентности к заболеваниям, увеличение скорости роста, улучшение качества продукции и др.
Животных, несущих в своем геноме рекомбинантный (чужеродный) ген, принято называть трансгенными, а ген, интегрированный в геном реципиента, — трансгеном. Продукт этого гена (белок) является трансгенным. Благодаря переносу генов у трансгенных животных возникают новые качества, а дальнейшая селекция позволяет закрепить их в потомстве и создавать трансгенные линии.
Получение трансгенных животных предусматривает ряд этапов:
1- приготовление раствора ДНК для микроинъекции;
2- извлечение эмбрионов из донорных организмов;
3-микроинъекция ДНК и пересадка инъецированных эмбрионов в яйцеводы или после культивирования в матку синхронизированных реципиентов.
ВВЕДЕНИЕ ДНК
В настоящее время наиболее распространенный метод — микроинъекция ДНК.
1- Ее осуществляют с помощью специальной пипетки (внутренний диаметр ее около 1 мкм), а количество инъецированного раствора ДНК составляет 1 — 2 пкл.
2- После инъекции ДНК эмбрионы культивируют до момента пересадки реципиентам.
3- После небольшого культивирования in vitro проинъецированные эмбрионы переносят в яйцеводы (хирургическим путем) реципиентов. Каждому реципиенту мыши, кролика и свиньи обычно пересаживают 20 — 30 инъецированных зигот, причем у свиней все эмбрионы трансплантируют в один яйцевод; у мышей и кроликов — раздельно по яйцеводам, а у овец, коз и крупного рогатого скота — по 2 — 4 эмбриона каждому реципиенту.
Генетический анализ родившихся трансгенных животных и полученного от них потомства показал, что, несмотря на инъекцию ДНК на ранних стадиях, в трансгенных линиях могут появляться так называемые мозаики. К мозаикам относят животных, происходящих из одной зиготы, но имеющих разные генотипы. Подсчитано, что около 30 % первичных трансгенных животных, полученных методом микроинъекции ДНК, — мозаики, что затрудняет создание чистых трансгенных линий животных. Этим объясняется тот факт, что трансген не передается потомству с ожидаемой в соответствии с законами Менделя частотой 50 %. Часть мозаиков вообще не может дать начало трансгенным линиям, так как у них отсутствует передача трансгена по наследству.
Назначение:
1. Продукция ценных биологически активных веществ.
Одна из важнейших задач сельскохозяйственной биотехнологии — выведение трансгенных животных с улучшенной продуктивностью и более высоким качеством продукции, резистентностью к болезням, а также создание так называемых животных-биореакторов — продуцентов ценных биологически активных веществ.
В конце 70-х годов XX в. на основе технологии рекомбинантной ДНК получили гормон роста микробного происхождения. Было показано, то ГР (гипофизарный гормон) оказывает такое же стимулирующее действие на лактацию и рост животного, как и гипофизарный ГР. Гормон роста, полученный с помощью методов генетической инженерии, при крупномасштабном применении вызывал увеличение удоев на 23 — 31 % при дозе 13 мг в день.
2. Другая важная задача — выведение трансгенных животных, устойчивых к заболеваниям. Потери в животноводстве, вызванные различными болезнями, достаточно велики, поэтому все более важное значение приобретает селекция животных по резистентности к болезням, вызываемых микроорганизмами, вирусами, паразитами и токсинами. Пока результаты селекции на устойчивость животных к различным заболеваниям невелики, но обнадеживающи. В частности, созданы популяции крупного рогатого скота с примесью крови зебу, устойчивые к некоторым кровепаразитарным заболеваниям. Установлено, что защитные механизмы от инфекционных заболеваний обусловлены либо препятствием вторжению возбудителя, либо изменением рецепторов. Вторжению возбудителей, равно как и их размножению, препятствуют в основном иммунная система организма и экспрессия генов главного комплекса гистосовместимости.
Показана возможность конструирования системы внутриклеточной иммунизации против инфекционных вирусов с участием мутационных форм эндогенных вирусных белков, защищающих от соответствующих вирусов. Так, получены трансгенные куры, устойчивые к лейкозу, у которых в клетках присутствовал белок вирусной оболочки.
3. Одна из важнейших задач стратегии использования трансгенных животных в медицине — получение биологически активных соединений за счет включения в клетки организма генов, вызывающих у них синтез новых белков.
В России группой ученых под руководством Л. К. Эрнста получены трансгенные овцы с геном химозина, в 1 л молока которых содержится 200 — 300 мг химозина — основного компонента для производства сыра. Стоимость его будет в несколько раз ниже продукта, получаемого традиционным способом из сычугов молочных телят и ягнят.