
- •Н.В. Коптева, с.П. Семенов Учебное пособие «Финансовая математика»
- •Оглавление
- •Часть 1. Теоретические основы финансово-коммерческих вычислений
- •Глава 2. Операции наращения
- •2.2.5. Определение срока ссуды и величины процентной ставки
- •Глава 3. Операции дисконтирования
- •Глава 4. Потоки платежей и финансовые ренты
- •Глава 5. Инфляция в финансово-коммерческих расчетах
- •Часть 1. Теоретические основы финансово-коммерческих вычислений
- •1. Глава
- •1.1. Фактор времени в финансово-коммерческих расчетах
- •1.2. Сущность финансовой математики
- •1.3. Основные категории, используемые в финансово-экономических расчетах
- •Test1. Тесты для проверки усвоения пройденного материала
- •Глава 2. Операции наращения
- •2.1. Простые проценты
- •2.1.1. Формула простых процентов
- •Решение:
- •Решение:
- •Решение:
- •2.1.2. Расчет процентов с использование процентных чисел
- •Решение:
- •2.1.3. Переменные ставки
- •Решение:
- •2.1.4. Определение срока ссуды и величины процентной ставки.
- •Решение:
- •Решение:
- •2.2. Сложные проценты
- •2.2.1. Формула сложных процентов
- •Решение:
- •Решение:
- •2.2.2. Эффективная ставка процентов
- •Решение:
- •Решение:
- •2.2.3. Переменная ставка процентов
- •Решение:
- •174'632,51 Долларов
- •2.2.4. Непрерывное начисление процентов
- •Решение:
- •2.2.5. Определение срока ссуды и величины процентной ставки
- •Решение:
- •2.3. Эквивалентность ставок и замена платежей
- •2.3.1. Эквивалентность процентных ставок
- •Решение:
- •Решение:
- •2.3.2. Изменение финансовых условий
- •Решение:
- •Решение:
- •Test2. Тесты для проверки усвоения пройденного материала
- •Формула простых процентов:
- •Формула сложных процентов:
- •Эффективная ставка процентов:
- •Глава 3. Операции дисконтирования
- •3.1. Сущность дисконтирования
- •3.2. Математическое дисконтирование
- •Решение:
- •Решение:
- •3.3. Банковский учет
- •Решение:
- •Решение:
- •Решение:
- •Решение:
- •Test3. Тесты для проверки усвоения пройденного материала
- •Глава 4. Потоки платежей и финансовые ренты
- •4.1. Сущность потока платежей и основные категории
- •4.2. Обобщающие характеристики финансовых потоков
- •4.2.1. Наращенная величина аннуитета
- •Решение:
- •Расчет наращенной величины аннуитета
- •Решение:
- •4.2.2. Современная (текущая) величина аннуитета
- •Решение:
- •4.3. Определение параметром аннуитета
- •Решение:
- •Решение:
- •4.4. Оценка некоторых видов аннуитета
- •4.4.1. Бессрочный аннуитет
- •4.4.2. Непрерывный аннуитет
- •4.5. Нерегулярные потоки платежей
- •Решение:
- •Наращение суммы для потока а
- •Наращение суммы для потока в:
- •Test4. Тесты для проверки усвоения пройденного материала
- •Глава 5. Инфляция в финансово-коммерческих расчетах
- •5.1. Сущность инфляции и необходимость ее учета в количественном анализе
- •Решение:
- •Решение:
- •5.2. Методы учета инфляции в финансовых расчетах
- •Решение:
- •Решение:
- •Решение:
- •Test5. Тесты для проверки усвоения пройденного материала
Решение:
Наращенная сумма:
FV = PV (1 + М/12 • i) = 2'000 (1 + 6/12 • 0'1) = 2'100 руб.
или
FV = PV • kн = 2'000 • 1,05 = 2'100 руб.
Сумма начисленных процентов:
I = PV • М/12 • i = 2'000 • 6/12 • 0,1 = 100 руб.
или
I = FV - PV = 2'100 - 2'000 = 100 руб.
Таким образом, через полгода необходимо вернуть общую сумму в размере 2'100 рублей, из которой 2'000 рублей составляет долг, а проценты – 100 рублей.
б) если время выражено в днях (t), то величина n выражается в виде следующей дроби:
n = t/T,
где t – число дней ссуды, т.е. продолжительность срока, на который выдана ссуда;
T – расчетное число дней в году (временная база).
Отсюда модифицированные формулы имеют следующий вид:
FV = PV (1 + t/T • i );
I = PV • t/T • i;
kн = 1 + t/T • i.
Здесь возможны следующие варианты расчета:
Временную базу (T) можно представить по-разному:
условно состоящую из 360 дней. В этом случае речь идет об обыкновенном (ordinary interest) или коммерческом проценте;
взять действительное число дней в году (365 или 366 дней). В этом случае получают точный процент (exact interest).
Число дней ссуды (t) также можно по-разному определять:
условно, исходя из того, что продолжительность любого целого месяца составляет 30 дней, а оставшиеся дни от месяца считают точно, – в результате получают так называемое приближенное число дней ссуды;
используя прямой счет или специальные таблицы порядковых номеров дней года, рассчитывают фактическое число дней между датами, – в этом случае получают точное число дней ссуды. 2>>>
Таким образом, если время финансовой операции выражено в днях, то расчет простых процентов может быть произведен одним из трех возможных способов:
Обыкновенные проценты с приближенным числом дней ссуды или, как часто называют, «германская практика расчета», когда продолжительность года условно принимается за 360 дней, а целого месяца – за 30 дней. Этот способ обычно используется в Германии, Дании, Швеции.
Обыкновенные проценты с точным числом дней ссуды, или "французская практика расчета", когда продолжительность года условно принимается за 360 дней, а продолжительность ссуды рассчитывается точно по календарю. Этот способ имеет распространение во Франции, Бельгии, Испании, Швейцарии.
Точные проценты с точным числом дней ссуды, или "английская практика расчета", когда продолжительность года и продолжительность ссуды берутся точно по календарю. Этот способ применяется в Португалии, Англии, США.
Чисто формально возможен и четвертый вариант: точные проценты с приближенным числом дней ссуды, – но он лишен экономического смысла.
Вполне естественно, что в зависимости от использования конкретной практики начисления простых процентов их сумма будет различаться по абсолютной величине.
Для упрощения процедуры расчета точного числа дней финансовой операции пользуются специальными таблицами порядковых номеров дней года (Приложение 1), в которых все дни в году последовательно пронумерованы. Точное количество дней получается путем вычитания номера первого дня финансовой операции из номера последнего дня финансовой операции.
Пример 3. Сумма 2 млн руб. положена в банк 18 февраля не високосного года и востребована 25 декабря того же года. Ставка банка составляет 35% годовых. Определить сумму начисленных процентов при различной практике их начисления.