
- •Вопрос 1.Электроника, ее основные области исследования; вакуумная, твердотельная, квантовая электроника, особенности физических процессов.
- •I.Вакуумная электроника:
- •II.Твердотельная электроника:
- •III.Квантовая электроника:
- •2. Структура кристаллов. Типы кристаллических решеток.
- •Вопрос 3 Собственные полупроводники
- •Вопрос 4. Энергетические уровни и зоны твердого тела. Соотношение неопределенностей Гейзенберга. Разрешенные и запрещенные зоны. Потенциальная кинетическая энергия электронов.
- •Вопрос 5. Квазиимпульс и эффективные массы носителей заряда. Междолинный переход носителей заряда, зависимость энергии электрона от импульса.
- •Вопрос 6 .Концентрация электронов и дырок в примесном полупроводнике
- •Вопрос7 Зонная диаграмма неоднородного п/п.
- •Вопрос 8.Механизмы рекомбинации.
- •Вопрос 9.Законы распределения равновесных носителей заряда в энергетических зонах. Распределение Ферми-Дирака.
- •Вопрос 11. Дрейфовое движение носителей заряда.
- •Вопрос 12. Диффузионное движение носителей заряда
- •Вопрос 15. Виды электронно-дырочных переходов.
- •Вопрос 16.Анализ равновесного p-n перехода. Высота потенц. Барьера, зав-ть от температуры и концентрации.
- •Вопрос 17.Анализ электронно-дырочного перехода в неравновесном состоянии
- •Вопрос 18. Математическая модель идеализированного p-n перехода.
- •Вопрос 19.
- •Вопрос 20 вах реального электронно-дырочного перехода
- •Вопрос 21. Обратная ветвь вах реального перехода
- •Вопрос 22
- •Вопрос 29
- •Вопрос 30
- •Вопрос 31 Фотопроводимость.
- •33. Термоэлектрический эффект Зеебека. Причины возникновения термо-эдс.
- •34. Термоэлектрический эффект Пельтье.
- •35.Гальваномагнитные явления
- •Вопрос 36
- •Вопрос 37. Особенности квантово-размерных структур. Квантовые переходы.
- •Вопрос 38.
- •Вопрос 39. Принципы усиления электромагнитного поля в квантовых системах
- •Вопрос 40 Физические основы эмиссионной электроники.
- •Вопрос 41
- •Вопрос 42
- •Вопрос 43 Автоэлектронная эмиссия
- •Вопрос 44. Электрический разряд в газе. Упругие и не упругие взаимодействия.
- •Вопрос 45. Стационарный газовый разряд: тихий тлеющий, дуговой. Нестационарные газовые разряды.
- •Вопрос 46. Понятие о плазме, основные свойства плазмы . Степень ионизации и квазенейтральности в плазме,дебаевский радиус экранизирования
- •Вопрос 47.Температура плазмы. Изотермическая и неизотермическая плазма. Колебание в плазме.
Вопрос 30
Механизмы поглощения:
Собственное (основное)
Примесное
Экситонное
Решётчатое
Свободными носителями
1)Энергия затрачивается на разрыв
валентной связи, атомы переводят
электроны в ЗП, энергия фотона при этом
больше
В диапазоне волн
,
а
,
коэффициент поглощения
резко падает, поэтому спектр собственного
поглощения имеет чётко выраженную
границу, называемую красной границей
фотоэффекта. Красная граница соответствует
минимуму энергии фотона для перевода
электрона из ВЗ в ЗП. Переходы электронов
из ВЗ могут быть прямые и непрямые. При
прямом переходе импульс электрона
практически не изменяется, так как
импульс фотона ничтожно мал, то им можно
пренебречь. Непрямые переходы происходят
в полупроводниках с экстремумами ВЗ и
ЗП, расположенными в разных точках
области квазиимпульсов.
Для соблюдения закона сохранения импульсов требуется участие третьей частицы -фонона. Энергия, затраченная на прямой переход, меньше, чем затраченная на непрямой. Но вероятность непрямого перехода мала, поскольку для непрямого перехода необходима встреча трёх частиц в одном месте.
Коэффициент
с непрямым переходом связан меньше, чем
с прямым. С понижением
вначале происходят непрямые переходы
(требуется меньше энергии), с ростом
энергии фотона будут происходить только
прямые. На величину
,
кроме типа полупроводника, влияет
температура. При росте температуры
ширина ЗЗ падает и
смещается в область длинных волн.
2) При примесном поглощении энергия
фотона затрачивается на ионизацию
примесей. При этом
.
Коэффициент примесного поглощения на несколько порядков меньше коэффициента собственного поглощения, так как плотность примесного состояния гораздо меньше плотности состояний в разрешённых зонах. Электроны в атомах примесей могут находиться и в возбуждённом, и в невозбуждённом состоянии, поэтому степень ионизации будет различной, тогда спектр примесного поглощения состоит из нескольких экстремумов. С ростом температуры происходит тепловая ионизация. Коэффициент при этом падает, так как число неионизованных примесей тоже падает.
При экситонном поглощении энергия фотона расходуется на образование экситона. Экситон – электронейтральное возбуждение в атоме (кристалле), обусловленное появлением связанных друг с другом электрона и дырки. При экситонном поглощении энергия фотона меньше , поэтому электрон из ВЗ не может перейти в ЗП, однако электрон способен удалиться от атома, оставаясь связанным с оставшейся дыркой. Связанная пара может перемещаться вдоль кристалла, но, будучи связанной, не создаёт электричество и ток. Влияние экситонной проводимости косвенное. Столкновение с экситоном или фононом может привести: 1)к потере им энергии, что эквивалентно возвращению энергии к валентному донору; 2)к получению энергии, то есть электрон переходит в ЗП с образованием дырки в ВЗ. В обоих случаях экситон расщепляется.
Если кристаллическая решётка содержит атомы различных веществ, то её можно рассматривать как систему электрических диполей. Диполи интенсивно поглощают энергию на частоте собственных колебаний. Поглощение излучения сопровождается появлением большого числа фононов. При этом тепловая энергия полупроводника растёт, поэтому концентрация свободных носителей растёт, изменяется их подвижность и энергия.
Поглощение излучения свободными носителями в ЗП и ВЗ связано с переходом с одних энергетических уровней на другие в пределах зоны. Зоны близко, поэтому спектр без экстремумов и непрерывный. невелик из-за малой концентрации свободных носителей.