
- •Издательство
- •Оглавление
- •Важнейшие классы неорганических соединений
- •Примеры решения задач
- •2. Эквивалент. Закон эквивалентов
- •Примеры решения задач
- •3. Строение атома
- •Примеры решения задач
- •4. Периодическая система элементов д. И. Менделеева
- •Примеры решения задач
- •Степени окисления фосфора, серы, хлора
- •5. Химическая связь и строение молекул
- •6. Энергетика и направление химических процессов
- •Примеры решения задач
- •После подстановки справочных данных из табл.I получаем
- •Таким образом, тепловой эффект реакции равен –853,8 кДж, а f 0Fe2o3 составляет –822,2 кДж/моль.
- •Используя справочные данные из табл.I получаем:
- •Решение. Вычисляем 0х.Р. И s0х.Р.:
- •Энергию Гиббса при соответствующих температурах находим из соотношения
- •При сгорании 1 л с2н4 (н.У.) выделяется 59,06 кДж теплоты. Определите стандартную энтальпию образования этилена. (Ответ: 52,3 кДж/моль).
- •103. Сожжены с образованием h2o(г) равные объемы водорода и ацетилена, взятых при одинаковых условиях. В каком случае выделится больше теплоты? Во сколько раз? (Ответ: 5,2).
- •7. Скорость химических реакций
- •Примеры решения задач
- •8. Химическое равновесие
- •Примеры решения задач
- •9. Способы выражения концентрации растворов
- •Примеры решения задач
- •10. Реакции обмена в растворах электролитов
- •Примеры решения задач
- •11. Гидролиз солей
- •Примеры решения задач
- •12. Коллоидные растворы
- •Примеры решения задач
- •13. Окислительно-восстановительные реакции
- •Примеры решения задач
- •14. Электродные потенциалы. Гальванические элементы
- •Примеры решения задач
- •Для первого электрода:
- •Для второго электрода:
- •15. Коррозия металлов
- •Примеры решения задач
- •16. Электролиз
- •Законы электролиза
- •Примеры решения задач
- •17. Полимеры
- •Примеры решения задач
- •Библиографический список
- •Приложение
- •Элементов д.И. Менделеева
17. Полимеры
Полимеры – это высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров характеризуются многократным повторением некоторых группировок атомов называющихся составными звеньями, и обладают такими свойствами, что они остаются практически неизменными при добавлении или удалении одного или нескольких составных звеньев. Исходные вещества, используемые для получения полимеров и образующие одно или несколько составных звеньев, называются мономерами.
Индивидуальные свойства полимера определяются размером его макромолекулы и ее строением. Размером макромолекулы характеризуется числом повторяющихся составных звеньев, называемым степенью полимеризации (n). Поэтому обобщенная формула макромолекулы полимера записывается указанием составного звена (СЗ) в скобках и степени полимеризации n: – (–СЗ–)n–.
Строение макромолекулы определяется составом и количеством атомов, входящих в составное звено, характером соединения составных звеньев между собой, пространственным расположением отдельных частей макромолекулы относительно других ее частей.
По характеру соединения составных звеньев в составе макромолекулы различают полимеры линейные, разветвленные и сетчатые.
По отношению к нагреванию разделяют термопластичные и термоактивные полимеры. Термопластичность – это способность полимера размягчаться при нагревании и затвердевать при охлаждении без химических превращений. Высокими термопластичными свойствами обладают линейные полимеры. При разветвлении полимеров термопластические свойства становятся менее выраженными. При образовании сетчатой структуры термопластичность теряется. Такие полимеры невозможно превратить в исходное состояние, они не проявляют термопластичных свойств и называются термоактивными полимерами.
Полимеры получают методами полимеризации или поликонденсации.
Полимеризация – это реакция образования полимеров путем последовательного соединения молекул мономера друг с другом при помощи перестройки ковалентных связей. Полимеризация характерна, главным образом, для соединений с кратными (двойными или тройными) связями. В процессе полимеризации происходит разрыв кратных связей или раскрытие циклов у мономеров и возникновение химических связей между группами с образованием полимеров, например
этилен полиэтилен
стирол полистирол
этиленоксид полиэтиленоксид
nCH2 = CH – CH=CH2 (–CH2–CH=CH–CH2–)n
бутадиен-1,4 полибутадиен (бутадиеновый каучук)
По числу участвующих мономеров различают гомополимеризацию (один вид мономера) и сополимеризацию (два и более видов мономеров).
Полимеризация – самопроизвольный экзотермический процесс (ΔG <0; Δ H <0), так как разрыв двойных связей ведет к уменьшению энергии системы. Однако без внешних воздействий (инициаторов, катализаторов, и т.д.) полимеризация протекает очень медленно. Полимеризация является ценной реакцией. Методом полимеризации получают ¾ выпускаемых полимеров.
Поликонденсация – это реакция образования полимеров из мономеров, имеющих две или несколько функциональные группы, сопровождающаяся выделением низкомолекулярных продуктов (H2O, NH3, HCl и др.).
При поликонденсации бифункциональных соединений получаются линейные полимеры, например, NH2–(CH2)5–COOH (аминокапроновая кислота) имеет две функциональные группы (-NH2 и -COOH) при ее поликонденсации за счет этих групп образуются молекулы воды и получается полимер – поликапроамид.
При поликонденсации цепь растет постепенно: сначала взаимодействуют между собой исходные мономеры, затем образовавшееся соединение реагирует с молекулами того же мономера, образуя в итоге полимер. В данном примере образование полимера протекает следующим образом:
2NH2–(CH2)5–COOH NH2–CH2–CO–NH–(CH2)5COOH + H2O;
NH2–(CH2)5–CO–NH–(CH2)5COOH + NH2–(CH2)5–COOH
NH2–(CH2)5CO–NH–(CH2)5–CO–NH–(CH2)5COOH + H2O и т.д.
Конечным продуктом будет поликапроамид (капрон). Суммарно процесс поликонденсации запишется:
n NH2–(CH2)5–COOH (–NH–(CH2)5–CO–)n + nH2O
аминокапроновая кислота поликапроамид
При поликонденсации соединений с тремя и более функциональными группами получаются сетчатые полимеры, Примером такой поликонденсации служит взаимодействие мочевины и формальдегида.
N
H2
– CO – NH2
+ H – C = O
NH2
– CO – NH – CH2OH;
мочевина H
формальдегид
N H2 – CO – NH – CH2OH + H – C = O CH2OH – NH – CO – NH – CH2OH
H
2CH2ОН – NH – CO – NH – CH2OH
CH2OH – NH – CO – NH – CH2 – O – CH2 – NH – CO – NH – CH2OH + H2O
На первом этапе получился олигомер линейной структуры:
(–CH2–NH–CO–NH–CH2–O–)n
На втором этапе при нагревании в кислой среде происходит дальнейшая поликонденсация олигомера с выделением CH2O и возникновением сетчатой структуры:
Так как в процессе поликонденсации наряду с высокомолекулярными соединениями образуются низкомолекулярные продукты, то составы полимеров и исходных веществ не совпадают. Этим поликонденсация отличается от полимеризации.