Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
21-24.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
50.49 Кб
Скачать

Вопрос 21: Случайная величина называется дискретной случайной величиной, если она принимает не более чем счетное число значений. Задание дискретной случайной величины по определению равносильно заданию закона распределения случайной величины в следующем виде:

Дискретные случайные величины

Определение1: Случайная величина называется дискретной случайной величиной, если она принимает не более чем счетное число значений. Задание дискретной случайной величины по определению равносильно заданию закона распределения случайной величины в следующем виде:

где

Следующее утверждение отражает связь между функцией распределения дискретной случайной величины и законом распределения случайной величины.

Утверждение 1: Закон распределения и функция распределения дискретной случайной величины взаимно однозначно определяют друг друга.

Примеры дискретных случайных величин:

1) дискретная случайная величина Бернулли(закон распределения Бернулли). Закон распределения дискретной случайной величины Бернулли имеет следующий вид: 0<p<1

Такому распределению соответствует бросание монеты, на одной стороне которой - 0, а на второй - 1.

2) дискретная биномиальная случайная величина(биномиальное распределение). Закон распределения данной дискретной случайной величины запишется следующим образом:

где

Число успехов в n испытаниях схемы Бернулли имеет биномиальное распределение.

3) дискретная случайная величина Пуассона(пуассоновское распределение с параметром ). Закон распределения дискретной случайной величины Пуассона задается следующим образом:

где - параметр.

Закон распределения случайной величины Пуассона носит название закона редких событий, поскольку оно всегда появляется там, где производится большое число испытаний, в каждом из которых с малой вероятностью происходит "редкое" событие. По закону Пуассона распределены, например, число вызовов, поступивших на телефонную станцию, число распавшихся нестабильных частиц и т.д.

4) дискретная геометрическая случайная величина (геометрическое распределение). Закон распределения геометрической дискретной случайной величины имеет вид

Пусть производятся независимые испытания, причем в каждом испытании возможны два исхода - "успех" с вероятностью p или "неуспех" с вероятностью 1 - p , 0 < p < 1 . Обозначим через число испытаний до первого появления "успеха", тогда будет дискретной геометрической случайной величиной.

Закон Пуассона

Если у восстанавливаемого изделия поток отказов простейший (отказы происходят в случайные моменты времени и чередуются с интервалами восстановления также случайными по продолжительности), тогда случайное число отказов изделия в течение фиксированной наработки имеет распределение Пуассона.

Этому же закону распределения подчиняется случайное число отказов восстанавливаемого изделия в течение периода приработки.

Закон Пуассона описывает вероятность возникновения n раз случайного события, имеющего интенсивность λ, за промежуток времени τ:

Pn(τ) = (λ∙τ)n/(n!) ∙ exp(-λ∙τ)

Характерные свойства закона Пуассона:

- математическое ожидание числа событий за промежуток времени τ равно λ∙τ: mx=λ∙τ;

- дисперсия числа событий – σ2=λ∙τ;

- распределение несимметричное, несимметричность особенно выражена при малых λ∙τ.

В теории надежности закон Пуассона используют тогда, когда нужно определить вероятность появления в изделии 1, 2, 3 и т.д. отказов за заданное время.

Вопрос 22:

Нормальное распределение, также называемое гауссовым распределением, гауссианой или распределением Гаусса — распределение вероятностей, которое задается функцией плотности распределения:

где параметр μ — среднее значение (математическое ожидание) случайной величины и указывает координату максимума кривой плотности распределения, а σ² — дисперсия.

Нормальное распределение играет важнейшую роль во многих областях знаний, особенно в статистической физике. Физическая величина, подверженная влиянию значительного числа независимых факторов, способных вносить с равной погрешностью положительные и отрицательные отклонения, вне зависимости от природы этих случайных факторов, часто подчиняется нормальному распределению, поэтому из всех распределений в природе чаще всего встречается нормальное (отсюда и произошло одно из названий этого распределения вероятностей).

Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]