
- •1.Термодинамические параметры системы. Уравнение состояния газа.
- •2.Виды теплового расчета теплообменных аппаратов.
- •3.Аналитическое выражение первого закона термодинамики. Внутренняя энергия. Работа расширения.Теплота. (на листочках тетрадных).
- •4.Виды и характеристики топлива.Теплота сгорания топлива.Условное топливо.Приведенное топливо.
- •5.Теплоемкость газов.Расчет средней теплоемкости.Энтальпия.
- •7.Первый закон термодинамики.
- •8.Количество воздуха,необходимого для горения топлива.Объемы и состав продуктов горения.
- •9.Второй закон термодинамики.Энтропия.
- •11.Термодинамические процессы идеальных газов:изотермический и адиабатный.
- •12.Водный режим парового котла. Охрана окружающей среды от вредных выбросов котельных агрегатов.
- •13.Влажный воздух: расчетные соотношения и определения.
- •14.Активные и реактивные турбины.Многоступенчатые турбины.Потери в проточной части турбины.Классификация турбин.
- •15.Уравнение первого закона термодинамики для потока.
- •16.Конденсационные устройства паровых турбин. Регеративные подогреватели и деаэратор.
- •17.Истечение из сужающего сопла:расчетные формулы для критического режима истечения.
- •18.Нагрузки тэс и технико-экономические показатели.
- •19.Расчет процессов водяного пара с помощью h-s диаграммы.
- •20.Атомные электрические станции. Тепловые схемы и элементы. Топливо аэс, реакторы на медленных и быстрых нейтронах.
- •21.Цикл газотурбинной установки.
- •22.Конструктивынй расчет рекуперативного теплообменника. Принцип и расчетные соотношения.
- •24.Основные характеристики топлива: телота сгорания, состав, условное топливо и приведенные характеристики.
- •25.Теплопередача между двумя жидкостями через разделяющую их стенку. Интенсификация теплопередачи и тепловая изоляция.
- •26.Термодинамические процессы водяного пара.
- •27.Типы теплообменных аппаратов и расчетные уравнения.
- •28.Котельные установки и их основные элементы. Тепловой баланс парового котла и его кпд. Конструкция отечественных котлов.
- •29.Термодинамические процессы идеальных газов: изохорный и изобарный.
25.Теплопередача между двумя жидкостями через разделяющую их стенку. Интенсификация теплопередачи и тепловая изоляция.
Процесс определяется совокупным действием различных видов переноса теплоты. От горячей жидкости к стенке и от стенки к холодной жидкости теплота передается вследствие конвекции, через стенку теплота передается теплопроводностью.
В целом такой процесс называется теплопередачей, и его количественной характеристикой является коэффициент теплопередачи k, определяющий количество теплоты, переданной через единицу поверхности в единицу времени от одной жидкости к другой при разности температур между ними в 10. В этом случае уравнение теплопередачи имеет вид:
Q= Fk(tfl- tf2), вт.
Тепловая изоляция - покрытие горячей поверхности, которое способствует снижению потерь теплоты в окружающую среду.
26.Термодинамические процессы водяного пара.
Основные термодинамических процессы изменения состояния воды и водяного пара: изобарный (p = const), изохорный (v = const), изотермический (Т = const), адиабатный (dq = 0).
27.Типы теплообменных аппаратов и расчетные уравнения.
Теплообменникомназывается аппарат, предназначенный для сообщения теплоты одному из теплоносителей в результате отвода его от другого теплоносителя.Процесс подвода и отвода теплоты в теплообменнике может преследовать различные технологические цели: нагревание (охлаждение) жидкости или газа, превращение жидкости в пар, конденсацию пара и т. д.
По принципу действия теплообменники делят на рекуперативные, регенеративные и смесительные.
Рекуперативными называют теплообменники, у которых передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их твердую стенку. В автомобильных ДВС используют в основном рекуперативные теплообменники, которые применяют для охлаждения моторного масла, жидкости системы охлаждения, воздуха, поступающего в цилиндры двигателя, и других целей.
Регенеративными называют теплообменники, у которых горячий теплоноситель соприкасается с твердым телом (керамической или металлической насадкой) и отдает ему теплоту,в последующий период с твердым телом соприкасается «холодный» теплоноситель, который и воспринимает теплоту, аккумулированную телом.
В металлургической промышленности регенеративные теплообменники применяют для подогрева воздуха и горючих газов. Аккумулирующую насадку в теплообменнике делают из красного кирпича. Особенностью регенераторов является то, что процесс теплопередачи в них является нестационарным. Поэтому технические расчеты регенеративных теплообменников выполняют по усредненным температурам во времени.
Смесительными называются теплообменники, у которых передача теплоты от одного теплоносителя к другому осуществляется их непосредственным соприкосновением, следовательно, сопровождается полным или частичным обменом вещества. Такие аппараты применяют для охлаждения и нагревания газов с помощью воды или для охлаждения воды воздухом в газовом производстве, при кондиционировании воздуха, при конденсации пара и т. д.
Несмотря на большое разнообразие теплообменных аппаратов, основные положения для их расчета остаются общими.
При расчете теплообменников обычно встречаются два случая:
1) конструктивный расчет, когда известны параметры теплоносителей на входе и выходе и расходы теплоносителей (или расход теплоты). Выбрав предварительно конструкцию теплообменник, расчетом, определяют поверхность теплообмена;
2) проверочный расчет, когда известны поверхность теплообмена и конструкция аппарата и частично известны параметры их на входе. Расчетом находят неизвестные параметры (например, параметры на выходе), расходы теплоносителей или другие характеристики аппарата (например, КПД).
В обоих случаях основными расчетными уравнениями служат: уравнение теплового баланса:
Q= m1с1 (t'1 – t''1)= m2с2 (t'2 - t''2)
и уравнение теплопередачи:
Q = kF(t1 – t2).
В этих уравнениях индекс 1 означает, что величины относятся к горячей жидкости, а индекс 2—к холодной. Температура на входе обозначена одним штрихом, а на выходе — двумя; т — массовый расход жидкости; с — теплоемкость жидкости.