- •Вводная лекция по дисциплине «История энергетики»
- •Основная литература
- •Дополнительная литература
- •Тема 1 Введение
- •1.1 Энергия и энергетика
- •1.2. Виды энергии и развитие человеческого общества
- •1.3. Количественные показатели энергетики
- •1.4. Естественные ресурсы
- •Вопросы для самопроверки
- •Тема 2 Гидро- и ветроэнергетика как начальный период развития энергетики
- •2.1. Предпосылки развития гидроэнергетики
- •2.2. Водяные колеса
- •2.3. Гидравлический двигатель
- •2.4. Гидроэнергетика и теплоэнергетика
- •Вопросы для самопроверки
- •Тема 3 История теплоэнергетики
- •3.1. Предпосылки возникновения теплоэнергетики
- •3.2. Начальный период развития теплового двигателя
- •3.3. Появление универсального парового двигателя
- •3.4. Специализация паросиловых установок и дальнейшее развитие паровых машин
- •3.5. Паровой котел
- •3.6. Возникновение парового транспорта
- •3.7. Двигатели внутреннего сгорания
- •3.8. Паровая турбина
- •3.9. Газовая турбина
- •3.10. Тепловые машины и их влияние на окружающую среду
- •Вопросы для самопроверки
- •Тема 4 Развитие электротехники и электромеханики
- •4.1. Этапы развития электротехники
- •4.2. Первый генератор электрического тока
- •4.3. Электродинамика, основные законы электрической цепи
- •4.4. Развитие электрических машин постоянного тока
- •Вопросы для самопроверки
- •Тема 5 Переход энергетической техники на качественно новый уровень
- •5.1. Роль электрического освещения в становлении электроэнергетики
- •5.2. Развитие кабельной и изоляционной техники
- •5.3. Развитие генераторов и двигателей однофазного тока
- •5.4. Развитие однофазных трансформаторов
- •5.5. Первые экспериментальные и теоретические исследования в области передачи электрической энергии постоянным током
- •5.6. Электростанции постоянного и однофазного переменного тока
- •5.7. Возникновение многофазных систем
- •5.8. Трехфазная система
- •5.9. Трехфазный трансформатор
- •5.10. Первая трехфазная линия электропередачи
- •Вопросы для самопроверки
- •Тема 6 Развитие первичной энергетики в связи с электрификацией
- •6.1. Развитие котлостроения
- •6.2. Развитие паровых турбин
- •6.3. Развитие гидравлических турбин
- •Вопросы для самопроверки
- •Тема 7 Развитие электростанций
- •7.1. Развитие тепловых электростанций
- •7.2. Развитие гидроэлектростанций
- •Вопросы для самопроверки
- •Тема 8 Развитие техники передачи электроэнергии на большие расстояния
- •8.1. Передача энергии постоянным током
- •8.2. Передача энергии переменным током
- •8.3. Развитие кабельных и воздушных линий
- •Вопросы для самопроверки
- •Темы для рефератов
Вопросы для самопроверки
1) Сколько и какие этапы можно выделить в развитии тепловых электрических станций?
2) Назовите основные типы тепловых электрических станций.
3) Почему в последние время единичная мощность энергетического оборудования не ограничивается размерами возможного резерва?
4) Где в России была построена первая ТЭЦ и в каком году?
5) Где в России была построена первая АЭС и в каком году?
6) С какой целью применяются ГТУ и ПГУ?
7) Назовите примеры использования альтернативных источников энергии для производства электрической энергии.
8) Имеют ли преимущества ГЭС по сравнению с ТЭС, если да, то перечислите их.
9) В деривационных и приплотинных ГЭС напор создается одинаковым способом? Если нет, то объясните принцип его создания.
10) Какая тенденция наблюдается в последнее время для увеличения мощности ГЭС?
11) Назовите мощность крупнейших ГЭС России.
12) Что такое ПЭС? Принцип работы.
13) Для чего предназначены гидроаккумулирующие станции?
14) Где была построена первая в СССР ГАЭС и в каком году?
Тема 8 Развитие техники передачи электроэнергии на большие расстояния
Характерным в развитии электропередачи всегда являлись: увеличение передаваемых мощностей, протяженности линий и как следствие - увеличение напряжения.
Повышение этих параметров на каждом новом этапе ставило новые и более сложные задачи перед учеными и инженерами, перед конструкторами электрических машин, линейных устройств и коммутационной аппаратуры.
Практически возможными являлись два метода электропередачи -постоянным или переменным токами.
Оба эти метода с различными успехами разрабатывались на протяжении всей истории электроэнергетики.
Основными средствами передачи электрической энергии являлись воздушные и кабельные линии со всем необходимым оборудованием.
8.1. Передача энергии постоянным током
В развитии электропередачи постоянным током можно выделить два основных направления:
получение высокого напряжения без преобразования рода тока;
использование преобразовательной техники.
Наибольших достижений в развитии техники передачи электроэнергии постоянным током удалось добиться швейцарскому инженеру Рэне Тюри.
Он реализовал идею Фонтена, введя небольшое усовершенствование: выходившая из строя электрическая машина специальным автоматом отсоединялась от линии, а концы последней соединялись между собой. На приемном конце линии сооружалась подстанция, на которой последовательно включались двигатели. Каждый из этих двигателей приводил в действие генератор низкого напряжения. Таким образом, «система Тюри» представляла собой линию высокого напряжения, присоединенную своими концами к двум системам последовательно включенных машин.
Первая электропередача по системе Тюри была осуществлена в Генуе в 1893 г. Она работала сначала на напряжении 5-6, затем 10 и даже 14 кВ при мощности 325 кВт. Общая длина линий достигала 60 км [1].
Опытами передачи по системе Тюри завершилось первое направление в развитии электропередачи постоянным током.
Второе направление возникло в 1918 г. К этому времени, как будет показано ниже, уже успешно действовала мощная 3-х фазная электропередача высокого напряжения (до 150 кВ).
Но уже к концу второго десятилетия текущего столетия наметились контуры новой и весьма неожиданной проблемы. Дело в том, что при значительных расстояниях передачи при высоком напряжении начинала существенно сказываться емкостная проводимость линий и значительно возрастал емкостной ток. При передачи энергии на расстояние более 300 - 500 км этот емкостной ток уже трудно было компенсировать.
Первым важность наметившейся проблемы оценил М.О. Доливо-Добровольский, и в ноябре 1918 г., за год до смерти, выступил с докладом на тему «О границах применения переменных токов для передачи энергии на большие расстояния». На основании технико-экономических расчетов он показал, что возможности переменного тока для целей электропередачи ограниченны и будущее в этом вопросе принадлежит постоянному току. В качестве примерной границы он указал напряжение ~ 200 кВ и расстояние порядка несколько сотен км. С современной точки зрения они являются конечно заниженными, но это ни в коей мере не умаляет важности принципиальной постановки задачи.
Замечательным является то, что еще в 1918 г. Доливо-Добровольский указывал, что одной из вероятных схем передачи энергии может быть линия постоянного тока, присоединенная на своих концах к преобразовательным подстанциям. Таким образом, он указывал на вероятность того, что генерирование и распределение энергии в будущем будут производиться переменным током, а ее передача - выпрямленным током высокого напряжения. В качестве одного из вариантов решения проблемы преобразования переменного тока в постоянный Доливо-Добровольский назвал применение ртутных выпрямителей.
Рост мощностей электростанций и дальности электропередачи, укрупнение энергосистем были столь быстрыми, что уже в 1920 - 1922 гг. в США, а затем и в других странах серьезно изучался вопрос об устойчивости параллельной работы синхронных генераторов. Известно, что нарушение устойчивости при каких-либо более или менее резких изменениях режима работы вызываются расстройством синхронной работы генераторов на связанных линиями электростанциях. Крупнейшая авария в 1965 г. в Нью-Йорке [1] показала, что нарушение устойчивости линий электропередачи переменного тока может привести к "распаду" даже очень крупную энергетическую систему. Глубокое изучение этого вопроса привело к тому, что наряду с другими методами повышения устойчивости параллельной работы стала рассматриваться и такая радикальная мера, как осуществление межсистемных связей линиями постоянного тока. В этом случае две связанные такой линией системы могут работать и не синхронно друг с другом.
При всех своих преимуществах электропередача постоянным током обладает крупными недостатками:
- она требует применения сложных и дорогих выпрямителей и инверторов;
- затрудняется решение задачи об отборе энергии в промежуточных пунктах линии, так как современная техника пока практически не располагает выключателями постоянного тока высокого напряжения.
В конце 30-х начале 40-х годов в разных странах было построено несколько опытных линий передачи постоянного тока напряжением 30-90 кВ.
