
- •1) Атомно-молекулярное учение. Основные законы: закон сохранения массы, постоянства состава, эквивалентов.
- •2) Строение атома. Электрон и его характеристики (гл.Квантовое число, орбитальное, магнитное).
- •3) Размещение электронов в атомах. Принцип Паули, правило Хунда.
- •4) Периодический закон и периодическая система элементов д.И.Менделеева. (s-, р- и d-элементы; периоды и группы; электронное строение атомов).
- •5) Основные свойства атомов (энергия ионизации, электроотрицательность, сродство к электрону, валентность, степень окисления)
- •6) Химическая связь. Типы химической связи (ковалентная – полярная и неполярная, ионная, металлическая, водородная, межмолекулярная).
- •7) Три основных свойства ковалентной связи (поляризуемость, насыщаемость, направленность).
- •8) Образование σ- и π- связей (показать графически).
- •9) Метод молекулярных орбиталей (ммо). Основные положения. Понятия связывающей и разрыхляющей молекулярных орбиталей ( на примере образования молекулы или иона).
- •10) Молекулярные параметры (энергия связи, межъядерное расстояние, кратность связи).
- •11) Применение ммо к двухатомным гомоядерным молекулам. Энергетические диаграммы в2, с2, о2 .
- •12) Применение ммо к двухатомным гетероядерным молекулам. Примеры.
- •14) Внутренняя энергия системы. Тепловой эффект реакции. 1 закон термодинамики.
- •16) Закон Гесса. Примеры.
- •17) Стандартная теплота образования, сгорания.
- •18) Энтропия – мера хаотичности системы.
- •19) Изобарно-изотермический потенциал.
- •20) Кинетика химических реакций. Скорость химических реакций для гомогенных процессов.
- •21) Закон действующих масс для определения скорости химических реакций (для гомогенных и гетерогенных процессов).
- •22) Молекулярность и порядок химических реакций.
- •23) Влияние температуры и энергии активации на скорость химических реакций. Эмпирическое уравнение Вант-Гоффа.
- •24) Уравнение Аррениуса. Предэкспоненциальный множитель. Стерический фактор.
- •25) Химическое равновесие. Влияние различных факторов на сдвиг химического равновесия. Принцип Ле Шателье.
- •26) Катализ. Влияние катализатора на скорость химической реакции.
- •27) Растворы. Классификация растворов. Движущие силы образования растворов (δ s и δ g).
- •28) Растворы неэлектролитов. Закон Рауля, закон Дальтона, закон Генри.
- •29) Температуры кипения и замерзания разбавленных растворов.
- •30) Осмос. Осмотическое давление.
- •31) Растворы электролитов. Растворы слабых электролитов и сильных электролитов. Степень диссоциации.
- •32) Слабые электролиты. Константа диссоциации. Закон разбавления Оствальда. Диссоциация кислот и оснований.
- •33) Ионное произведение воды. Водородный показатель кислотно-основных свойств растворов.
- •34) Растворы сильных электролитов. Теория Дебая-Хюккеля. Уравнение Дебая-Хюккеля.
- •35) Основные классы неорганических веществ – оксиды, кислоты, соли, основания. Дать примеры каждого класса и химические реакции каждого класса. Примеры. Реакция нейтрализации (пример).
- •36) Окислительно-восстановительные реакции. Основные типы реакций (пример).
3) Размещение электронов в атомах. Принцип Паули, правило Хунда.
Если атом находится не возбужденном состоянии, то его электроны занимают самые низкие по энергиям орбитали.
Принцип Паули (шведский химик). Он вывел в 1925 г принцип запрета – в атоме не может быть 2х электронов, у которых были бы одинаковыми все 4 квантовых числа. Согласно этому принципу на одной орбитали могут находиться только 2 электрона, имеющие 3 одинаковых квантовых числа, но различные спины.
Правило Хунда (Х~В). При заполнении электроном энергетических уровней существует следующая закономерность: на данном уровне электроны стремятся занять энергетический уровень таким образом, чтобы суммарный спин был максимальным.
С 1s22s22p2
4) Периодический закон и периодическая система элементов д.И.Менделеева. (s-, р- и d-элементы; периоды и группы; электронное строение атомов).
Исследуя изменения хим св-в элементов в зависимости от величины их относительной массы. Менделеев 1869 г. открыл закон периодичности этих веществ. свойства элементов и потому и свойства образуемых ими простых или сложных тел стоят в периодической зависимости от атомных весов элементов. Физическая основа периодического закона была установлена в 1922 г. Нельеом Бором, в результате он представил классификацию элементов находящихся в таблице с точки зрения числа электронов в нейтральном атоме, которая равна заряду ядра атома. При образовании хим связи, электроны могут перераспределяться между атомами, а заряд ядра остается неизменным, поэтому со временем формулировка периодического закона гласит след образом, свойства элементов находящихся в периодической зависимости от зарядов ядер их атомов. Это обстоятельство отражено в периодической системе в виде горизонтальных и вертикальных рядов.
Период – это горизонтальный ряд, имеющий одинаковое число электронных слоев, номер периода совпадает со значением главного квантового числа, таких периодов 7, второй и последний период начинается щелочным элементом и заканчивается инертным газом. По вертикали периодическая система подразделяется на 8 групп, причем каждая группа делится на главную подгруппу (s и p элементы) и побочную подгруппу ( d – элементы) . элементы главной подгруппы содержать на внешнем уровне одинаковое число электронов, которое равно номеру группы.
Na (11) 1s22s22p63s13p03d0
Сходство элементов внутри каждой группы наиболее важная закономерность в периодической системе. Все периоды начинаются с щелочных металлов и все периоды заканчиваются инертными газом, путь которых заполнен внешними электронами.
5) Основные свойства атомов (энергия ионизации, электроотрицательность, сродство к электрону, валентность, степень окисления)
Все атомы находящиеся в периодической системе было принято характеризовать определенным числом свойств: размер атомов, энергия ионизации, сродство к электрону, электроотрицательность, степень окисления. Все перечисленные свойства связаны с электрической конфигурацией атома. Атомы не имеют строго определенных границ, что обусловлено волновой природой электронов, в расчетах пользуются так называемыми эффективными и кажущимися радиусами. Эти радиусы шарообразных атомов сближенных между собой при образовании кристаллов. Чем больше атомный радиус, тем слабее удерживаются внешние электроны и наоборот. В периоде атомный радиус увеличивается слева направо, а в группе сверху вниз. Энергия ионизации обозначается как (J) – это энергия необходимая для отрыва наиболее слабо связанного электрона от атома, измеряется в электровольтах. Атомы могут не только отдавать, но и присоединять электроны, при этом образуя соответствующий анион. Выделившая при этом процессе энергия называется сродством к электрону (Е) – измеряется так же в электровольтах и наибольшее …… в конце периода.
Электроотрицательность. Определение электроотрицательности (Х) дал в 1932 г знаменитый ученый Полинг – это способность атома в молекуле притягивать к себе электроны. Для количественной характеристики предложено считать меры электроотрицательности энергию, равную арифметической сумме энергии ионизации атома и энергии сродства к электрону ( Х= J+Е). самое большое значение имеет фтор (21,4 эл. вольта), а электроотрицательность литий (1 эВ) и сравнивают электроотрицательностью значения других элементов.