
- •Современные силовые преобразователи мощных электроприводов
- •Общие сведения о современных частотно-регулируемых электроприводах
- •Область применения частотно-регулируемых электроприводов в горной промышленности
- •Основные законы скалярного управления частотно-регулируемых электроприводов
- •Эффективность применения частотно-регулируемых электроприводов
- •Частотно-регулируемый электропривод с вентильным двигателем
- •Частотно-регулируемые электроприводы российских изготовителей
- •Преобразователи частоты концерна abb
- •Преобразователи частоты фирмы «siemens»
- •Преобразователи частоты компании «schneider electric»
- •Частотно-регулируемый электропривод технологических установок магистрального транспорта углеводородного сырья
- •Преимущества устройств плавного пуска по сравнению с традиционными пусковыми устройствами
- •Принцип действия и система управления
- •Диаграмма изменения напряжения на зажимах статора двигателя. Основные способы управления
- •Критерии выбора устройства плавного пуска
- •Особые случаи применения
- •Функции защит устройства плавного пуска и двигателя
- •Функции контроля
- •Программные средства настройки
- •Современная элементная база силовой электроники
- •Выпрямители
- •Инверторы
- •Преобразователи частоты
- •Реверсивные тиристорные преобразователи
- •Системы управления полупроводнковыми преоразователями
- •Драйверы igbt - транзисторов
- •Защита полупроводниковых преобразователей
- •Защита перегрузок по току
- •Ограничение скорости нарастания анодного тока
- •Ограничение скорости изменения анодного напряжения
- •Теплоотвод
- •Защита цепи управляющего электрода.
- •Схемная защита
- •Реверсивные электроприводы постоянного тока по системе тиристорный преобразователь - двигатель
- •Реверс по цепи якоря
- •Реверс по цепи обмотки возбуждения
- •Способы повышения коэффициента мощности элетропривода с полупроводниковыми преобразователями
- •Поочередное управление последовательно соединенными преобразователями.
- •Восьмиразрядные микроконтроллеры компании freescale semiconductor в корпусах с малым числом выводов
- •Модельный ряд мк
- •Три процессорных ядра hc08
- •Подсистема реального времени
Реверсивные тиристорные преобразователи
Изменение направления тока в нагрузке, необходимое на практике (например, реверсивный электропривод), может быть осуществлено без применения переключающих аппаратов. Для этого достаточно иметь два комплекта вентилей тиристорных преобразователей (ТП), каждый из которых обеспечивает протекание тока только в одном направлении.
Все существующие схемы реверсивных ТП можно разделить на два класса: встречно-параллельные и перекрестные.
Наибольшее распространение в трехфазных мостовых схемах выпрямления получила встречно-параллельная схема соединения комплектов вентилей, так как в ней используется более простой двухобмоточный трансформатор и, кроме того, она допускает применение бестрансформаторного питания вентильных комплектов непосредственно от сети трехфазного тока.
В перекрестной схеме обязательным является трансформатор Тр с двумя комплектами вторичных обмоток, что ведет к усложнению конструкции, увеличению габаритной мощности и удорожанию трансформатора.
В зависимости от полярности напряжения на нагрузке Н и направления тока в ней в реверсивном ТП возможны следующие режимы:
Напряжение и ток в нагрузке совпадают и имеют прямое направление — первый комплект вентилей УВ1 работает в выпрямительном режиме. При этом угол управления α1 у вентилей этого комплекта 0 < α1 < 90°, и нагрузка потребляет энергию.
Напряжение на нагрузке обратное, но ток в нагрузке продолжает протекать в прямом направлении — комплект УВ1 работает инвертором (90° < α1 < 180°). Энергия из цепи нагрузки отдается в сеть.
Напряжение и ток нагрузки обратные — комплект УВ2 работает выпрямителем (0 < α2 < 90°), и нагрузка потребляет энергию.
Напряжение на нагрузке прямое, а ток обратный — УВ2 работает в инверторном режиме (90° < α2 < 180°), и нагрузка отдает энергию в сеть.
Перевод ТП и нагрузки из одного режима в другой осуществляется путем воздействия на углы управления вентильными комплектами.
В реверсивных ТП необходимо, чтобы переход тока от одного вентильного комплекта к другому переходил без пауз, ухудшающих динамические характеристики ТП, и чтобы в контуре, образованном обеими группами (в схемах на рис. 20 этот контур показан стрелками), уравнительный ток, бесполезно загружающий вентили и трансформатор, был бы сведен к минимальному значению.
Эти требования выполняются, если равны постоянные составляющие напряжений комплекта, работающего в выпрямительном либо в инверторном режиме, и другого комплекта, через который в данный момент времени ток нагрузки не проходит и управление которым подготовлено соответственно к инверторному или выпрямительном режиму.
В случае, когда управляющие импульсы подаются одновременно на вентили обоих комплектов ТП, а углы управления соответствуют приведенным выше равенствам, управление называется согласованным.
Рис. 21. Регулировочная характеристика реверсивного преобразователя
Для обеспечения такой связи
между углами α1
и α2
необходимо, чтобы характеристики
вход-выход
систем импульсно-фазового
управления (СИФУ) обоими комплектами
вентилей были зеркально подобными. Для
управления ТП чаще всего используются
системы управления с арккосинусоидальной
характеристикой
,
при которой результирующая регулировочная
характеристика ТП
получается линейной во всем диапазоне
регулирования.
Несмотря на равенство средних значений напряжений при согласованном управлении имеет место разность мгновенных значений выходных напряжений комплектов вентилей ТП. Причиной этого являются пульсации выходных напряжений комплектов вентилей. Под действием разности мгновенных напряжений через вентили и обмотки трансформатора, минуя цепь нагрузки, протекает уравнительный ток iур (см. рис. 20). Помимо дополнительных потерь в элементах схемы, уравнительный ток в переходных режимах может привести к аварийным отключениям схемы. Для ограничения уравнительного тока в цепь вентильных комплектов включают ограничительные реакторы ОР1 и ОР2.
Рис. 22. Функциональная схема управления преобразователем, питающим якорную цепь электродвигателя
Полное устранение уравнительного тока может быть получено при раздельном управлении комплектами вентилей. Оно заключается в снятии управляющих импульсов с вентилей того комплекта, который в данный момент не проводит ток. В этом случае один из комплектов вентилей всегда заперт и контур для протекания уравнительного тока отсутствует. Благодаря этому из схемы можно исключить ограничивающие реакторы и полностью использовать установленную мощность ТП, так как выпрямительный комплект можно открывать с нулевым углом управления. Однако при этом усложняется система управления ТП, так как приходится вводить в систему датчики тока комплектов вентилей УВ1 и УВ2 либо датчик тока нагрузки ДТ (рис. 22). При спаде тока, протекающего через работающий комплект вентилей, либо тока определенного направления в нагрузке до достаточно малого значения, логическим устройством ЛУ вырабатываются команды, управляющие ключами К1 и К2. Последние снимают управляющие импульсы, например, с системы управления СУ1, и подают импульсы на систему управления СУ2 другого комплекта вентилей ТП.
При совместном управлении суммарная нагрузка преобразователей может значительно превышать полезную нагрузку на выходе из-за наличия уравнительных токов. Однако эти же токи позволяют обеспечивать непрерывное плавное управление при малом токе нагрузки или при его отсутствии. Данные обстоятельства обусловливают целесообразность объединения в одной системе принципов раздельного и совместного управления. В данной комплексной системе управления двухкомплектный преобразователь преимущественно работает в режиме раздельного управления. Однако при уменьшении тока нагрузки ниже определенного уровня обеспечивается режим совместного управления с уравнительными токами, позволяющий осуществлять плавное и непрерывное регулирование при прерывистом токе якоря.
В комплексной системе управления двухкомплектным преобразователем уравнительные токи протекают лишь при малых токах нагрузки, поэтому габариты реактора невелики. При больших нагрузках, когда работает один комплект преобразователя и отсутствуют уравнительные токи, магнитопровод реактора насыщается, и он практически не оказывает влияние на работу электропривода.