Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Gidravlika_-_vsyo_gotovoe.doc
Скачиваний:
2
Добавлен:
09.12.2019
Размер:
1.9 Mб
Скачать

1.4 Основное уравнение гидростатики

Р ассмотрим тот основной случай равновесия жидкости, когда на нее действует лишь одна массовая сила – сила тяжести. Свободная поверхность жидкости в этом случае, как известно, является горизонтальной плоскостью. Пусть жидкость содержится в сосуде (рис. 2.2) и на ее свободную поверхность действует давление p0. Найдем величину гидростатического давления p в произвольно взятой точке M, расположенной на глубине h.

Рис. 2.2

Выделим около точки М элементарную горизонтальную площадку dS и построим на ней вертикальный цилиндрический объем высотой h. Рассмотрим условие равновесия указанного объема жидкости, выделенного из общей массы жидкости. Давление жидкости на нижнее основание цилиндра теперь будет внешним и направлено по нормали внутрь объема, т. е. вверх. Запишем сумму всех сил, действующих на рассматриваемый объем в вертикальном направлении: где последний член представляет собой вес жидкости в указанном объеме. Силы давления по боковой поверхности цилиндра в уравнение не войдут, так как они нормальны к этой поверхности.

Сократив на dS и перегруппировав члены, получим (2.1)

Полученное уравнение называют основным уравнением гидростатики; оно позволяет определить давление в любой точке покоящейся жидкости. Это давление, как видно из уравнения, складывается из двух величин: давления p0 на внешней поверхности жидкости и давления, обусловленного весом вышележащих слоев жидкости. Величина p0 является одинаковой для всех точек объема жидкости, поэтому, учитывая второе свойство гидростатического давления, можно сказать, что давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости и по всем направлениям одинаково (закон Паскаля).

Поверхность, во всех точках которой давление одинаково, называется поверхностью уровня. В данном случае поверхностями уровня являются горизонтальные плоскости, а свободная поверхность является одной из поверхностей уровня. Возьмем на произвольной высоте горизонтальную плоскость сравнения, от которой вертикально вверх будем отсчитывать координаты z. Обозначим через z координату точки M, через z0 – координату свободной поверхности жидкости и заменив в уравнении (2.1) h на z0 – z, получим

(2.2)

Но так как точка M взята произвольно, то можно утверждать, что для всего рассматриваемого неподвижного объема жидкости

Координата z называется нивелирной высотой. Величина имеет также линейную размерность и называется пьезометрической высотой. Сумма называется гидростатическим напором. Таким образом, гидростатический напор есть величина постоянная для всего объема неподвижной жидкости.

1.5 Давление жидкости на плоскую наклонную стенку

Пусть мы имеем резервуар с наклонной правой стенкой, заполненный жидкостью с удельным весом γ. Ширина стенки в направлении, перпендикулярном плоскости чертежа (от читателя), равна b (рис.2.3). Стенка условно показана развернутой относительно оси АВ и заштрихована на рисунке. Построим график изменения избыточного гидростатического давления на стенку АВ.

Так как избыточное гидростатическое давление изменяется по линейному закон P=γgh, то для построения графика, называемого эпюрой давления, достаточно найти давление в двух точках, например А и B.

Рис. 2.3. Схема к определению равнодействующей гидростатического давления на плоскую поверхность

Избыточное гидростатическое давление в точке А будет равно

PA = γh = γ·0 = 0

Соответственно давление в точке В:

PB = γh = γH

где H - глубина жидкости в резервуаре.

Согласно первому свойству гидростатического давления, оно всегда направлено по нормали к ограждающей поверхности. Следовательно, гидростатическое давление в точке В, величина которого равна γH, надо направлять перпендикулярно к стенке АВ. Соединив точку А с концом отрезка γH, получим треугольную эпюру распределения давления АВС с прямым углом в точке В. Среднее значение давления будет равно

Если площадь наклонной стенки S=bL, то равнодействующая гидростатического давления равна

где hc = Н/2 - глубина погружения центра тяжести плоской поверхности под уровень жидкости.

Однако точка приложения равнодействующей гидростатического давления ц.д. не всегда будет совпадать с центром тяжести плоской поверхности. Эта точка находится на расстоянии l от центра тяжести и равна отношению момента инерции площадки относительно центральной оси к статическому моменту этой же площадки.

где JАx - момент инерции площади S относительно центральной оси, параллельной Аx.

В частном случае, когда стенка имеет форму прямоугольника размерами bL и одна из его сторон лежит на свободной поверхности с атмосферным давлением, центр давления ц.д. находится на расстоянии b/3 от нижней стороны.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]