
- •1.1 Уравнение равновесия жидкости в общем виде:
- •1.2 Гидравлические машины гидростатического действия
- •1.4 Основное уравнение гидростатики
- •1.5 Давление жидкости на плоскую наклонную стенку
- •1.6 Коэффициент температурного расширения.
- •1.7 Коэффициент объемного сжатия.
- •1.8 Закон Архимеда.
- •1.9 Приборы для измерения давления
- •1.10 Абсолютное и манометрическое давление.
- •1.11 Вязкость жидкости
- •2.1 Распределение скоростей и потери давления при ламинарном движении жидкости в трубах
- •2.2 Уравнение Бернулли для потока жидкости
- •2.3 Истечение жидкости через насадки
- •2.4 Уравнение неразрывности потока
- •2.5 Общие потери давления
- •2.6 Гидравлический удар в трубах.
- •2.7 Основы расчёты в трубопроводах при равномерной раздаче расхода по пути.
- •2.8. Основные формулы для гидравлического расчёта трубопровода.
- •2.9 Частные виды местных сопротивлений
- •2.10 Потери давления в местных сопротивлениях
- •2.11 Истечение жидкости через большое отверстие
- •2.12 Уравнение Бернулли для элементарной струйки
- •2.13 Определение потерь давления по длине
- •2.13 Геометрический смысл ур-ия Бернулли.
- •2.14 Истечение жидкости через малое отверстие в тонкой стенке при постоянном давлении
- •2.17 Гидравлические элементы потока
- •2.18 Основы расчеты простых коротких и длинных трубопроводов
- •2.19 Истечение жидкости из малого отверстия в тонкой стенке при переменном напоре.
- •2.20 Параллельное соединение трубопроводов
- •2.21 Гидротранспорт
- •2.22 Два режима движения жидкости
- •2.23 Последовательное соединение трубопроводов
- •2.24 Энергетический смысл уравнений Бернулли
- •2.25 Основные формулы гидравлического расчета трубопроводов.
- •3.1 Распределине скоростей по сечению потока в жидкости в открытых руслах(ф-ла базена)
- •3.2.Гидравлически наивыгоднейшее сечение канала
- •3.3 Виды движения воды в грунтах
- •3.4 Классификация водосливов
- •3.5 Гидравлический расчет каналов
- •3.6 Водослив с тонкой стенкой
- •3.7 Формулы для определения коэф. Шези
- •3.10 Водосливы практического профиля
- •3.11 Водослив с широким порогом
- •3.12 Закон фильтрации
- •3.13 Особенности движения жидкости в открытых руслах. Расчетная формула
2.19 Истечение жидкости из малого отверстия в тонкой стенке при переменном напоре.
Истечение жидкости при переменном напоре представляет собой один из примеров неустановившегося движения жидкости. Ниже приведено описание его двух простейших случаев.
Опорожнение резервуара. Рассмотрим заполненный жидкостью резервуар площадью горизонтального сечения, в дне которого устроено отверстие площадью Ѡ.
Пусть при опорожнении резервуара начальный напор над центром тяжести отверстия был Н1, а конечный – Н2 (рис 1.40). Если за время опорожнения резервуара притока жидкости не происходит, то опорожнение резервуара можно считать по формуле:
Следовательно, время полного опорожнения резервуара при переменном напоре в 2 раза больше времени, потребного для вытекания из резервуара того же количества жидкости при постоянном напоре, равном начальному напору Н1.
2.20 Параллельное соединение трубопроводов
Схема прокладки параллельных трубопроводов используется в тех случаях, когда на трассе магистрального трубопровода есть
участки, где требуется уменьшить гидравлические сопротивления трубопровода (высокие перевальные точки трубопровода) или при заложении трубопровода в трудно доступных местах (переход через реки и др.). При параллельном соединении трубопроводов имеются две особые точки, называемые точками разветвления.
В
этих точках находятся концы параллельных
ветвей трубопровода (точки А и В). Будем
считать, что жидкость движется слева
направо, тогда общий для всех ветвей
напор в точке А будет
больше напора в другой общей для всех
ветвей трубопровода точке В
(НА
Н
к ).
В точке А поток
жидкости растекается по параллельным
ветвям, а в точке В вновь
собирается в единый трубопровод.
Каждая ветвь может иметь различные
геометрические размеры: диаметр и
протяжённость (длину). Поскольку вся
система трубопроводов является закрытой,
то поток жидкости в данной системе будет
транзитным, т.е.
Жидкость движется по всем ветвям при одинаковой разности напоров:
>
тогда расход жидкости по каждой ветви
можно записать в виде:
Поскольку
ветвей в системе п,, а
число неизвестных в системе уравнений
будет п+1, включая
напор, затрачиваемый на прохождение
жидкости по всем ветвям
,
то в качестве дополнительного
уравнения в системе будет использовано
уравнение неразрывности:
При решении системы уравнений можно воспользоваться соотношением:
Для
построения гидравлической характеристики
системы параллельных трубопроводов
можно воспользоваться методом графического
суммирования. Суммирование осуществляется
по оси расходов Q. т.к.
2.21 Гидротранспорт
Установки гидравлического транспорта (рис. 1) служат для перемещения насыпного груза по трубам и желобам в струе жидкости (воды). Смесь груза с водой называется гидросмесь или пульпа. Принцип действия гидравлических транспортных установок заключается в передаче энергии движущейся воды частицам насыпного груза и перемещении их с большой скоростью.
Гидротранспортные установки разделяют на напорные и безнапорные. По желобам (каналам) пульпа перемещается самотеком в сторону движения. По трубопроводам пульпа перемещается самотеком или под напором с помощью насоса: в горизонтальном направлении, вниз или вверх.
Гидротранспорт применяется в котельных ТЭС (для уборки золы, шлака); на металлургических заводах (для уборки шлаков); в горной промышленности (подъем на поверхность угля, руды и подача в шахты закладочного материала); на обогатительных фабриках; в химической промышленности; в строительстве (перемещение размытого струей воды грунта).
Преимуществами гидротранспортных установок являются: компактность трубопроводов; герметичность; высокая производительность; большая длина транспортирования по сложной трассе; простота технического обслуживания; возможность создавать любую по очертаниям трассу; автоматизация процесса транспортирования; обеспечение загрузки и разгрузки в любой точке трассы.