Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
колоквіум.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
379.24 Кб
Скачать

33. Зняття внутрішніх напружень і карбідне перетворення(третє перетворення при відпусканні)

Відпускання - вид термічної обробки, в результаті якої при нагріванні нижче температури А1 в попередньо загартованих сталях відбуваються фазові перетворення, що наближають їх структуру до рівноважної. Мета гартування з відпусканням - одержати більш високий рівень механічних властивостей порівняно із відпаленим або нормалізованим станом.

Унаслідок гартування одержують структуру мартенситу та залишкового аустеніту (його кількість залежить від вмісту вуглецю та легувальних елементів у сталі, температури гартування). При відпусканні відбувається розпадання мартенситу з виділенням вуглецю і утворенням карбідів, а також перетворення залишкового аустеніту.

Третє перетворення у вуглецевих сталях спостерігається при 300...400°С. Завершується розпадання мартенситу і карбідне перетворення. Із мартенситу виділяється весь надлишковий вуглець у вигляді карбідів, у зв’язку з цим тетрагональна гратка стає ОЦК, тобто мартенсит перетворюється у ферит. Порушується когерентність фаз і відокремлюються гратки фериту та e-карбіду. Одночасно e-карбід перетворюється у цементит Fe3С. Довжина зразка зменшується. Ферито-карбідна суміш, що утворюється до кінця третього перетворення, називається трооститом відпускання.

34. Коагуляція карбідів при відпусканні. Зернистий перліт.

Коагуляція карбідів (четверте перетворення при відпуску). Нагрівання до більш високих температур (400-700°С) ініціює зміниу структурі, не пов’язані із фазовими перетвореннями (змінюються форма та розміри карбідів, відбуваються процеси віднови і рекристалізації фериту). В цьому полягає сутність четвертого перетворення.

В інтервалі температур третього перетворення цементит має форму пластин, починаючи від 400°С відбувається їх коагуляція (укрупнення) і сфероїдизація (округлення). Швидкість цих процесів зростає із підвищенням температури. Починаючи від 400°С густина дислокацій у фериті зменшується, зерна укрупнюються, а їх форма наближається до рівноважної і, таким чином, повністю усувається фазовий наклеп, що виникає при мартенситному перетворенні. Ферито-карбідна суміш, що утворюється при температурі 450...650°С, називається сорбітом відпускання (зернистим сорбітом). При температурі відпускання, близькій до А1, утворюється груба ферито-цементитна суміш – зернистий перлит.

35. Вплив відпускання на механічні властивості

Розпад мартенситу при відпуску впливає на всі властивості сталі. При низьких температурах відпуску (до 200-250 °С) зменшується схильність сталі до крихкого руйнування. У випадку низькотемпературного відпуску твердість загартованої й відпущеної сталі не залежить від вмісту в ній легуючих елементів і визначається в основному вмістом вуглецю в -розчині. Тому высоковуглецеві сталі, що мають високу твердість після гартування, зберігають її (більш високий вміст вуглецю в мартенситі) і після відпуску при температурах до 200-250 °С. Міцність і в'язкість сталі при низьких температурах відпуску трохи зростають внаслідок зменшення макро- і мікронапруг і зміни структурного стану (виділення зміцнюючих фаз-карбідів). З підвищенням температури відпуску від 200-250 до 500-680 °С помітно знижується твердість, тимчасовий опір, границя текучості й підвищується відносне подовження й звуження.

Це пояснюється зменшенням вмісту вуглецю в - розчині, зривом когерентності на границі між карбідами й - фазою, розвитком у ній спочатку процесів повернення, а при високій температурі - рекристалізації, а також коагуляцією карбідів.

Всі леговані сталі, що особливо містять карбідоутворюючі елементи, після відпуску при однакових порівнюваних температурах мають більше високу твердість, ніж вуглецеві сталі, що пов'язане з уповільненням розпаду мартенситу, утворенням і коагуляцією карбідів. У сталях, що містять велику кількість таких елементів, як хром, вольфрам або молібден, у результаті відпуску при високих температурах (500-600 °С) спостерігається навіть підвищення міцності й твердості, пов'язане з виділенням у мартенситі часток спеціальних карбідів, що підвищують опір пластичній деформації.