Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Tema_8_Modelirovanie_v_psikhologii_lektsia.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
177.66 Кб
Скачать

Многомерное шкалирование (мш).

Одним из количественных методов изучения психических явлений и процессов, адекватно отражающих их системный характер, признан метод МШ. С его помощью анализируются попарные различия Dij между элементами i и j, в результате чего строится геометрический образ системы. Элементы системы изображаются точками моделирующего пространства, а связям между элементами соответствуют расстояния dij между i и j. Метод МШ разрабатывался в работах У.Торгерсона, Р.Шеппарда, К.Кумбса, Д.Краскала, Ф.Янга, В.Крылова и других.

Модели МШ можно расклассифицировать по двум основаниям.

По типу данных, полученных в эксперименте:

  • прямое субъективное шкалирование (задана одна матрица близостей Dij);

  • модель предпочтений (задана матрица близостей Dij и матрица предпочтений);

  • модель индивидуального шкалирования (задано несколько матриц близостей).

По процедуре реализации метода:

  • метрическое шкалирование (расстояние в реконструируемом пространстве dij пропорционально различиям Dij, полученным в эксперименте);

  • неметрическое шкалирование (данные Dij монотонно связаны с расстояниями dij в пространстве Минковского).

Совместное использование МШ и КА позволяет провести анализ данных, более адекватный, чем даёт применение каждого метода в отдельности. При больших выборках необходимо сначала провести КА, а затем, с помощью МШ реконструировать пространство всех классов и каждого класса в отдельности (при необходимости). На основании обобщённого опыта было обнаружено, что при КА маленькие классы адекватны данным, часто являясь осмысленными группами, а большие – нет. И, наоборот, при МШ небольшие изменения в данных могут стать причиной существенных изменений в локальном взаимном расположении точек. В то же время общее расположение точек внутри конфигурации является содержательным (см. работы Граева, Суппеса).

§3.2. Стохастические модели Вероятностные модели. Модели с латентными переменными.

Модели с латентными переменными являются важным классом вероятностных моделей. Они основаны на предположении о том, что наблюдаемые, объясняемые тестами переменные могут быть объяснены с помощью так называемых латентных более глубинных переменных, которые невозможно измерить непосредственно, однако можно оценить их значение косвенно. К методам латентных переменных относятся:

  • конфирматорный факторный анализ,

  • эксплораторный факторный анализ,

  • регрессионный анализ,

  • однофакторный анализ,

  • методы латентных структур.

Цель создания моделей с латентными переменными – объяснение наблюдаемых переменных и взаимосвязей между ними с помощью латентных переменных. При заданном значении наблюдаемых переменных требуется сконструировать множество латентных переменных и функцию, которая достаточно хорошо аппроксимировала бы наблюдаемые переменные, а в конечном счёте – плотность вероятности наблюдаемой переменной.

В факторном анализе основной акцент делается на моделировании значений наблюдаемых переменных, их корреляциях, ковариациях, а в методах латентно-структурного анализа – на моделировании распределения вероятности наблюдаемых переменных.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]