
- •Лабораторная работа №4 Изучение опто- и светодиодов. Снятие температурной зависимости вах p-n перехода.
- •1 Взаимодействие оптического излучения с твердым телом
- •Основные параметры процесса поглощения излучения в полупроводниках.
- •1.2. Основные механизмы поглощения излучения
- •2 Фотоэлектрические явления в полупроводниках и полупроводниковых приборах.
- •2.1 Основные понятия и параметры
- •2.2 Фотопроводимость полупроводников. Собственная и примесная фотопроводимость
- •Коэффициент усиления фотопроводимости.
- •2.3 Квазиуровни Ферми в полупроводнике
- •2.4 Фотоэдс в однородных полупроводниках (фотоэдс Дембера)
- •2.5 Фотоэдс в неоднородных полупроводниках (объемная фотоэдс)
- •2.6 Фотоэлектромагнитный эффект
- •2.8 Барьерная фотоэдс
- •3. Источники излучения оптоэлектроники
- •3.2. Светодиоды
- •Экспериментальная часть
- •2.2 Снятие вах диода при комнатной температуре, обратное включение. (По усмотрению преподавателя.)
3. Источники излучения оптоэлектроники
Приборы, в которых осуществляется преобразование электрической энергии в световую, относятся к излучающим. К оптическому диапазону спектра в общем случае относятся электромагнитные волны, длина которых составляет от 1 до 106 нм. Реально в оптоэлектронике используется обычно более узкий диапазон длин волн, включающий видимую и ближние инфракрасную и ультрафиолетовую области спектра. Рассмотрим основные типы излучающих твердотельных приборов.
3.1. Физические основы взаимодействия излучения с веществом
Существует три возможных процесса взаимодействия квантовых систем и электромагнитного излучения (спонтанное излечение кванта, поглощение и вынужденное излечение кванта),, которые схематически показаны на рис. 17.
|
Рисунок 17. Квантовые переходы при взаимодействии с фотоном: а) – спонтанный переход с испусканием фотона; б) – вынужденный переход с поглощением фотона; в) – вынужеденный переход с испусканием фотона. |
Рассмотрим переходы частицы из одного состояния в другое с выделением или поглощением энергии электромагнитного поля. Возбужденная частица в произвольный момент времени может самопроизвольно перейти в более низкое энергетическое состояние, излучив при этом квант света. Такое излучение называется спонтанным.
Другим оптическим процессом является поглощение излучения частицей, переходящей в результате этого в возбужденное состояние.
При взаимодействии возбужденной частицы с фотоном возможен переход частицы в состояние с меньшей энергией - при этом излучается дополнительный фотон. Этот процесс носит название вынужденного или стимулированного излучения.
3.2. Светодиоды
Светодиод является полупроводниковым излучающим прибором с одним или несколькими n-р-переходами, преобразующий электрическую энергию в энергию некогерентного светового излучения. Излучение возникает в результате рекомбинации инжектированных носителей в одной из областей, прилегающих к n-р-переходу. Рекомбинация происходит при переходе носителей с верхних уровней на нижние. Последние могут быть прямыми (без изменения импульса) и непрямыми (с изменением импульса). Межзонные и энергетические переходы из зоны проводимости в заполненную зону дают эффективное излучение, если переходы прямые. При непрямых переходах излучательная рекомбинация может эффективно осуществляться через примесные центры в два этапа: сначала локализация носителя на примесном центре, а затем его рекомбинация со свободным носителем другого знака.
Длина волны излучаемого света зависит от ширины запрещенной полосы полупроводника, поэтому для получения излучения в видимой области используются широкозонные полупроводники. К ним относятся арсенид галлия, фосфид галлия, карбид кремния, многокомпонентные полупроводниковые соединения, например GaAlAs и другие.
Основным параметром светодиодов является внутренняя квантовая эффективность (отношение числа фотонов к количеству инжектированных в базу носителей) и внешняя эффективность (отношение потока фотонов из светодиода к потоку носителей заряда в нем). Внешняя эффективность в значительной мере определяется технологией и с ростом ее уровня может быть значительно увеличена. Мощность оптического излучения светодиода может быть найдена из уравнения:
,
где Р - излучаемая мощность, I/e - поток инжектированных носителей через переход, ηe - КПД вывода излучения, ηs - КПД светового излучения. Произведение ηeηs представляет собой внешнюю квантовую эффективность. Для светодиодов с поверхностными излучателями она составляет около 3%, а для приборов с торцевыми излучателями 0,5-1%.
Наибольшие сложности возникают при получении коротковолнового излучения из-за технологических проблем создания n-р-переходов в соответствующих полупроводниках. Поэтому излучатели с синим цветом свечения часто выполняются в виде МДП-структур на основе нитрида галлия, карбида кремния, сульфидов и селенидов цинка и кадмия. Некоторые данные по внешней эффективности светодиодов на различных материалах сведены в таблице 4.
Одним из способов получения коротковолнового излучения может быть включение диода Шотки в обратном направлении. В начальном участке лавинного пробоя происходит ударная ионизация с образованием электронов и дырок, рекомбинация которых может давать излучение в синей области спектра.
Таблица 4.
Материалы и параметры светодиодов
Материал |
Примесь или состав |
Цвет свечения |
Максимум , нм |
hвн |
GaAs |
Si |
ИК |
950 |
12 -50 |
GaAs |
Zn |
ИК |
900 |
12 -50 |
GaP |
ZnO |
красный |
690 |
7 |
GaP |
N |
зеленый |
550 |
0.7 |
GaAs1-ХРx |
x = 0.39 |
красный |
660 |
0.5 |
GaAs1-ХРx |
x = 0.5 - 0.75 |
янтарный |
610 |
0.04 |
Ga1-ХAlxAs |
x = 0.05 - 0.1 |
ИК |
800 |
12 |
Ga1-ХAlxAs |
x = 0.3 |
красный |
675 |
1.3 |
In1-ХGaxР |
x = 0.58 |
красный |
659 |
0.2 |
|
|
янтарный |
617 |
0.1 |
In1-ХGaxР |
x = 0.6 |
желто- |
570 |
|
GaN |
|
зеленый синий |
410 |
0.03 |
Создание эффективного светодиода для синей области позволяет получать любые цвета излучения путем нанесения на поверхность соответствующих люминофоров. Коротковолновое излучение может быть получено и при использовании антистоксовых люминофоров, хотя КПД преобразования длинноволнового излучения в коротковолновое мал (порядка 1%), а прибор имеет низкое быстродействие. Весьма важным является вопрос создания излучателей для области 1,1 - 1,3 мкм. Дело в том, что именно при длине волны 1,3 мкм имеют место минимальные потери в световодах.
Основные характеристики светодиодов – вольтамперные, яркостные и спектральные.
ВАХ светодиодов аналогичны ВАХ обычных диодов. Яркостные (рис.18а) характеризуются некоторым пороговым током и участком насыщения при больших токах из-за усиления вклада безизлучательной рекомбинации.
Спектральные характеристики (рис. 18б) имеют максимум, положение и ширина которого зависят от состава и энергетической структуры материала.
|
Рисунок 18. Спектральные (а) и световая (б) характеристики светодиодов. |
Основными параметрами светоизлучающих диодов являются длина волны, полуширина спектра излучения, мощность излучения, рабочая частота и диаграмма направленности излучения. Ширина спектральной полосы излучения светодиода может быть найдена из уравнения:
Светодиоды находят широкое применение в цифровых индикаторах, световых табло, устройствах оптоэлектроники. Принципиально возможно формирование на их основе экрана цветного телевидения.