Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика ответы 3.docx
Скачиваний:
0
Добавлен:
09.12.2019
Размер:
299.56 Кб
Скачать

Здесь представлены некоторые ответы.

При возможности прошу пополнять и делиться Вконтакте –(http://vk.com/club42684839)

Все ответы взяты с интернета

№1

Физика в природе

Физика – одна из наук, изучающих природу. Свое название физика получила от греческого слова «фюзис», что в переводе означает «природа». Поначалу физикой называли науку, которая рассматривала любые природные явления. Впоследствии же круг изучаемых физикой явлений был достаточно четко обозначен.

Что же называют явлениями природы? Явления природы – это изменения, которые постоянно в ней происходят.

Среди физических явлений прежде всего необходимо назвать:

  • механические, которые связаны с движением тел. Физика не только рассматривает и описывает движение, но и объясняет причины, по которым тело начинает или прекращает движение, движется или покоится;

  • тепловые, обусловленные внутренним строением вещества (изучает термодинамика);

  • электромагнитные;

  • световые.

Благодаря важным открытиям развивается не только сама физика, но и другие естественные науки: химия, астрономия, биология и др. Физика – одна из основ естественных наук. Изучение физики имеет важнейшее значение и для развития техники: люди получили возможность сконструировать самолеты и космические корабли, электронные приборы, компьютерную технику и многое другое.

Физика и техника

Развитие физики сопровождалось изменением представлений людей об окружающем мире. Отказ от привычных взглядов, возникновение новых теорий, изучение физических явлений характерно для физики с момента зарождения этой науки до наших дней. Важное значение имеют открытия в области физики для развития техники. Например, двигатель внутреннего сгорания, приводящий в движение автомобили, тепловозы, речные и морские суда, был создан на основе изучения тепловых явлений. С развитием науки в технике за последние десятилетия произошли грандиозные изменения. То, что раньше считалось научной фантастикой, сейчас является реальностью. Сегодня трудно представить нашу жизнь без видеомагнитофона, компьютера, мобильной и интернет-связи.

№2

Методы измерений. Измерение физической величины может быть осуществлено различными методами (способами), выбор которых в каждом отдельном случае зависит от характера измеряемой величины, от условий измерения, от устройства и принципа действий измеряемой аппаратуры, а также требуемой точности.

По способу получения числового значения измеряемой величины методы измерения делят на 3 вида:

1. Прямые

2. Косвенные

3. Совокупные

Они различаются по характеру использования мер.

К наиболее важным методам, прямых измерений постоянно встречающихся на практике, относятся следующие:

1. Метод непосредственной оценки.

2. Метод сравнения, состоящий из четырех разновидностей:

а) нулевой метод;

б) дифференциальный метод;

в) метод замещения;

г) метод совпадения.

Сущность метода непосредственной оценки Состоит в том, о значение измеряемой величины судят по показанию одного или нескольких приборов прямого преобразования, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемое. Он принадлежит к числу наиболее распространенных в технической практике (в силу своей простоты), и типичным его примером служит измерение электрических величин стрелочными приборами. Точность этого метода обычно ограничивается точностью измерительных приборов. Отличительной особенностью этого метода является то, что мера непосредственного участия в процессе измерения не принимает.

Сущностью метода сравнения является то, что при использовании этих методов измеряемая величина в процессе измерения сравнивается с величиной, воспроизводимой мерой.

Таким образом, отличительной чертой методов сравнения является непосредственное участие меры в процессе измерения. Они различаются по характеру использования мер.

А) Нулевой метод – это метод, при котором результатирующий эффект воздействия измеряемой величины и образцовой меры на прибор сравнения (нулевой индикатор) доводится до нуля. Примерами использования нулевых методов в электротехнике являются мостовые и компенсационные схемы. Нулевые методы значительно сложнее методов непосредственной оценки, требуют значительно большего времени, но зато точность их несравненно выше (0,02% и выше).

Нулевые методы применяются в основном при проверке приборов используемых непосредственной оценке.

Б) Дифференциальный метод – это метод, при котором непосредственно оценивается измерительными приборами разность между измеряемой величиной и образцово мерой или разность производимых ими эффектов.

Аиз-А=а

Аиз – измеряемая величина; А – показание прибора; а – погрешность.

Зная А и измерив а, можно найти Аиз. Точность этого метода тем выше, чем меньше измеряемая разность и с тем большей точностью она измерена (если разность между Аиз и А составляет 1% и измерено с точностью до 1%, то точность измерения составит уже 0,01%).

Дифференциальные методы используются при точных лабораторных измерениях (поверка образцовых сопротивлений, поверка измерительных трансформаторов и др.).

В) Метод замещения. Этот метод заключается в том, что в процессе измерения измеряемая величина Аиз заменяется в измерительной установки известной величиной А, при чем путем измерения величины А, измерительная установка приводится в прежнее состояние, то есть достигаются те же показания приборов, что и при действии величины Аиз. При таких условиях Аиз=.

Г) Метод совпадения. Этот метод заключается в том, что измеряют разность между искомой величиной и образцовой мерой, используя совпадения меток шкал или периодических сигналов. Сущность этого метода можно пояснить на примере определения размера дюйма.

 

1дюйм= 127/5=254/10=25,4мм

№3

Механическое движение – это изменение положения тела в пространстве относительно других тел.

Например, автомобиль движется по дороге. В автомобиле находятся люди. Люди движутся вместе с автомобилем по дороге. То есть люди перемещаются в пространстве относительно дороги. Но относительно самого автомобиля люди не движутся. В этом проявляется относительность механического движения. Далее кратко рассмотрим основные виды механического движения.

Относительность механического движения

Все тела во Вселенной движутся, поэтому не существует тел, которые находятся в абсолютном покое. По той же причине определить движется тело или нет, можно только относительно какого-либо другого тела.

Например, автомобиль движется по дороге. Дорога находится на планете Земля. Дорога неподвижна. Поэтому можно измерить скорость автомобиля относительно неподвижной дороги. Но дорога неподвижна относительно Земли. Однако сама Земля вращается вокруг Солнца. Следовательно, дорога вместе с автомобилем также вращается вокруг Солнца. Следовательно, автомобиль совершает не только поступательное движение, но и вращательное (относительно Солнца). А вот относительно Земли автомобиль совершает только поступательное движение. В этом проявляется относительность механического движения.

Относительность механического движения – это зависимость траектории движения тела, пройденного пути, перемещения и скорости от выбора системы отсчёта.

Материальная точка

Во многих случаях размером тела можно пренебречь, так как размеры этого тела малы по сравнению с расстоянием, которое походит это тело, или по сравнению с расстоянием между этим телом и другими телами. Такое тело для упрощения расчетов условно можно считать материальной точкой, имеющей массу этого тела.

Материальная точка – это тело, размерами которого в данных условиях можно пренебречь.

Многократно упоминавшийся нами автомобиль можно принять за материальную точку относительно Земли. Но если человек перемещается внутри этого автомобиля, то пренебрегать размерами автомобиля уже нельзя.

Как правило, решая задачи по физике, рассматривают движение тела как движение материальной точки, и оперируют такими понятиями, как скорость материальной точки, ускорение материальной точки, импульс материальной точки, инерция материальной точки и т.п.

Система отсчёта

Материальная точка движется относительно других тел. Тело, по отношению к которому рассматривается данное механическое движение, называется телом отсчёта. Тело отсчёта выбирают произвольно в зависимости от решаемых задач.

С телом отсчёта связывается система координат, которая представляет из себя точку отсчёта (начало координат). Система координат имеет 1, 2 или 3 оси в зависимости от условий движения. Положение точки на линии (1 ось), плоскости (2 оси) или в пространстве (3 оси) определяют соответственно одной, двумя или тремя координатами. Для определения положения тела в пространстве в любой момент времени также необходимо задать начало отсчёта времени.

Система отсчёта – это система координат, тело отсчета, с которым связана система координат, и прибор для измерения времени. Относительно системы отсчёта и рассматривается движение тела. У одного и того же тела относительно разных тел отсчёта в разных системах координат могут быть совершенно различные координаты.

Траектория движения также зависит от выбора системы отсчёта.

Виды систем отсчёта могут быть различными, например, неподвижная система отсчёта, подвижная система отсчёта, инерциальная система отсчёта, неинерциальная система отсчёта.

№4