
- •59) Явление диффузии.
- •60) Строение и модели клеточных мембран
- •62). Концентрационный элемент и формула Нернста.
- •64) Потенциал покоя клетки. Уравнение Гольдмана-Ходжкина-Катца.
- •65) Возбудимость клеток и тканей. Методы возбуждения. Закон «все или ничего».
- •Возбудимость
- •66).Потенциал действия: графический вид и характеристики, механизм возникновения и развития.
- •67). Потенциал-зависимые ионные каналы: строение, свойства, функционирование.
- •68). Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.
64) Потенциал покоя клетки. Уравнение Гольдмана-Ходжкина-Катца.
Потенциа́л поко́я (ПП) — мембранный потенциал возбудимой клетки в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от -55 до -100 мВ[1]. У нейронов и нервных волокон обычно составляет -70 мВ. Измеряется изнутри клетки.
Для того, чтобы на мембране поддерживалась разность потенциалов, необходимо, чтобы была определенная разность концентрации различных ионов внутри и снаружи клетки.
Концентрации ионов в клетке скелетной мышцы и во внеклеточной среде
Ионы |
Концентрация в саркоплазме (ммоль) |
Концентрация вне клетки (ммоль) |
K+ |
140 |
2,5 |
Na+ |
10 |
120 |
Cl- |
3-4 |
120 |
Ca2+ |
<0,001 |
2 |
A- (полипептиды) |
140 |
0 |
С помощью уравнения Нернста можно рассчитать равновесный трансмембранный потенциал для K+, который и определяет значение ПП. Но значение потенциала покоя полностью не совпадает с EK+, так как в создании его участвуют также ионы натрия и хлора, вернее, их равновесные потенциалы.
Впоследствии было доказано, что основной вклад в создание потенциала покоя вносит выходящий калиевый ток, который осуществляется через специфические белки-каналы — калиевые каналы постоянного тока. В покое калиевые каналы открыты, а натриевые каналы закрыты. Ионы калия выходят из клетки по градиенту концентрации, что создает на наружной стороне мембраны избыток положительных зарядов; при этом на внутренней стороне мембраны остаются отрицательные заряды. Некоторый (небольшой) вклад в создание потенциала покоя вносит также работа так называемого "натрий-калиевого насоса", который образован особым мембранным ферментом - натрий-калиевой АТФазой.
Потенциал покоя для большинства нейронов составляет величину порядка −60 мВ — −70 мВ. У клеток невозбудимых тканей на мембране также имеется разность потенциалов, разная для клеток разных тканей и организмов.
ПП формируется в два этапа.
Первый этап: создание незначительной (-10 мВ) отрицательности внутри клетки за счёт неравного асимметричного обмена Na+ на K+ в соотношении 3 : 2. В результате этого клетку покидает больше положительных зарядов с натрием, чем возвращается в неё с калием. Такая особенность работы натрий-калиевого насоса, осуществляющего взаимообмен этих ионов через мембрану с затратами энергии АТФ, обеспечивает его электрогенность.
Результаты деятельности мембранных ионных насосов-обменников на первом этапе формирования ПП таковы:
1. Дефицит ионов натрия (Na+) в клетке.
2. Избыток ионов калия (K+) в клетке.
3. Появление на мембране слабого электрического потенциала (-10 мВ).
Второй этап: создание значительной (-60 мВ) отрицательности внутри клетки за счёт утечки из неё через мембрану ионов K+. Ионы калия K+ покидают клетку и уносят с собой из неё положительные заряды, доводя отрицательность до -70 мВ.
Итак, мембранный потенциал покоя - это дефицит положительных электрических зарядов внутри клетки, возникающий за счёт утечки из неё положительных ионов калия и электрогенного действия натрий-калиевого насоса.
Простейшей материальной физико-химической моделью, демонстрирующей механизмы электрогенеза в живых тканях является модель Нернста, а соответствующей простейшей математической моделью - уравнение Нернста. Эта простейшая модель рассматривает раствор только одной соли. Живые ткани содержат значительное число разных электролитов. Математической моделью, аналогичной модели Нернста, но описывающей механизмы электрогенеза с учетом наличия многих электролитов, является модель Гольдмана-Ходжкина-Катца:ЭДС=(RT:F)·ln(pК1CК1e+pК2CК2e+…+pA1CA1i…):(pК1CК1i+pК2CК2i+…+pA1CA1e…)). Здесь, как и в модели Нернста: R - универсальная газовая постоянная, Т - абсолютная температура растворов, F - число Фарадея, CK1 - концентрация катиона 1 (например, калия), CK2 - концентрация катиона 2 (например, натрия), CA1 - концентрация аниона 1 (например, хлора), pK - проницаемость мембраны для катиона, pA - проницаемость мембраны для аниона, индексы при символах CK1,…, CA1: i - на внутренней поверхности мембраны, e - на наружной поверхности мембраны.