Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
слух,вест аппарат.docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
299.12 Кб
Скачать

Глава 12. Физиология чувства равновесия, слуха и речи 283

Острые двусторонние дисфункции у человека редки. В опытах на животных их симптомы намного слабее, чем при одностороннем нарушении, поскольку двустороннее прерывание афферентации вестибулярных ядер не затрагивает «симметрии» организма. Невесомость (при космических полетах) не влияет на полукружные каналы, но устраняет действие силы тяжести на отолиты, и отолитовые мембраны во всех макулах занимают положение, определяющееся их собственными упругими свойствами. Возникающая картина возбуждения никогда не встречается на Земле, что может приводить к симптомам укачивания. По мере привыкания к условиям невесомости большее значение приобретает зрительная афферентация, а роль отолитового аппарата снижается [16].

12.2. Физиология слуха

Обиходное различие между физическим и биологическим аспектами слуха отражается в терминологии. «Акустическими» называют физические свойства звука, а также механические устройства или анатомические структуры, на которые они влияют. Говоря о физиологических процессах слуха и их анатомических коррелятах, используют термин «слуховой».

Физические свойства звукового стимула (акустика)

Звук это колебания молекул1) упругой среды (в частности, воздуха), распространяющиеся в ней в виде продольной волны давления. Такие колебания среды генерируются колеблющимися телами, например камертоном или раструбом громкоговорителя, которые передают ей энергию, сообщая ускорение ближайшим к ним молекулам. От последних энергия переходит к молекулам, расположенным чуть дальше, и т.д. Этот процесс распространяется вокруг источника звука как волна со скоростью (в воздухе) около 335 м/с. В результате колебания молекул в среде возникают зоны с большей или меньшей плотностью их упаковки, где давление соответственно выше или ниже среднего. Амплитуда его изменения называется звуковым давлением. Его можно измерить с помощью специальных микрофонов, зарегистрировав эффективное значение (см. учебник физики) и частотные особенности, которые и служат характеристиками звука. Как и любое другое, звуковое давление выражают в Н/м2 (Па), однако в акустике обычно применяют сравни-

1} Речь идет о колебаниях, накладывающихся на броуновское движение молекул.

тельную величину - так называемый уровень звукового давления (УЗД), измеряемый в децибелах (дБ). Для этого интересующее нас звуковое давление рх делят на произвольно выбранное эталонное ро, равное 2-105 Н/м2 (оно близко к пределу слышимости для человека), а десятичный логарифм частного умножают на 20. Таким образом,

Логарифмическая шкала выбрана потому, что облегчает описание широкого диапазона звукового давления в пределах слышимости. Множитель 20 объясняется просто: десятичный логарифм отношения силы звуков (I), исходно названный «бел» (в честь Александра Белла), равен 10 дБ. Однако звуковое давление ρ измерить легче, чем силу звука. Поскольку последняя пропорциональна квадрату амплитуды давления (I ~ р2) и lg ρ2 = 2 lg p, этот коэффициент введен в уравнение. Такого рода измерения проводятся в основном в технике связи. Уровень звукового давления для тона с давлением звука 2 10−1 Н/м2, например, вычисляется следующим образом:

Таким образом, звуковое давление 2-101 Н/м2 соответствует УЗД 80 дБ. Легко видеть, что удвоение звукового давления повышает УЗД на 6 дБ, а увеличение в 10 раз - на 20 дБ. Ординаты на рис. 12.8 слева иллюстрируют связь между этими параметрами.

В акустике обычно уточняют: «дБ УЗД», поскольку дБ-шкала широко применяется для описания других явлений (например, напряжения) или с другими условными значениями эталонов. Дополнение «УЗД» подчеркивает, что число получено по приведенному выше уравнению с р0 = 2· 10−5 Н/м2.

Сила звука - это количество энергии, проходящей через единицу поверхности за единицу времени; она выражается в Вт/м2. Величине 1012 Вт/м2 в плоскости звуковой волны соответствует давление 2 105 Н/м2.

Частота звука выражается в герцах (Гц); один герц равен одному циклу колебаний в секунду. Частота звука та же, что у его источника, если последний неподвижен.

Звук, образованный колебаниями одной частоты, называется тоном. На рис. 12.5, А показана временная характеристика звукового давления для этого случая. Однако чистые тоны в повседневной жизни практически не встречаются; большинство звуков образовано наложением нескольких частот (рис. 12.5, Б). Обычно это сочетание основной частоты и нескольких кратных ей по величине гармоник. Таковы музыкальные звуки. Основная частота отражается

284 ЧАСТЬ III. ОБЩАЯ И СПЕЦИАЛЬНАЯ СЕНСОРНАЯ ФИЗИОЛОГИЯ

Рис. 12.5. Изменение звукового давления (р) во времени: А-чистый тон; Б-музыкальный звук; В-шум. Τ - период основной музыкальной частоты; у шума периода нет

в периоде сложной волны звукового давления (Т на рис. 12.5, Б). Так как различные источники образуют разные гармоники, звуки при одинаковой основной частоте могут различаться, чем и достигается богатство оттенков звучания при игре оркестра [25]. Звук, состоящий из множества несвязанных между собой частот, называется шумом (рис. 12.5,5), в частности «белым шумом», если в нем в равной

степени представлены практически все частоты в диапазоне слышимости. Регистрируя звуковое давление шума, периодичность обнаружить не удается.