
- •1.Економіка як об’єкт моделювання.
- •2.Моделювання як метод пізнання дійсності.
- •3.Особливості та принципи математичного моделювання економічних систем і процесів.
- •4.Випадковість і невизначеність процесів економічних систем.
- •5.Адекватність економіко-математичних моделей.
- •6.Класифікація економіко-математичних моделей.
- •7.Сутність оптимізаційних моделей і методів.
- •8.Математичне програмування.
- •9.Математична постановка оптимізаційних задач.
- •10.Класифікація задач математичного програмування.
- •11.Приклади побудови лінійних оптимізаційних математичних моделей економічних систем.
- •12.Загальна лінійна оптимізаційна математична модель. Лінійне програмування.
- •13.Форми запису лінійних оптимізаційних задач.
- •14.Геометрична інтерпретація лінійних оптимізаційних моделей.
- •15.Графічний метод розв’язування лінійних оптимізаційних задач.
- •16.Симплексний метод розв’язування задач лінійного програмування.
- •17.Алгоритм розв’язування задачі лінійного програмування симплексним методом.
- •18.Метод штучного базису.
- •19.Економічна інтерпретація пари двоїстих задач лінійного програмування.
- •20.Правила побудови двоїстих моделей оптимізаційних задач.
- •21.Основні теореми двоїстості та їх економічний зміст.
- •22.Приклади застосування теорії двоїстості для знаходження оптимальних планів прямої та двоїстої оптимізаційних задач.
- •23.Оцінка рентабельності продукції, яка виробляється.
- •24.Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- •25.Економічна постановка і математичні моделі задач з цілочисловими змінними.
- •26.Геометрична інтерпретація розв’язків цілочислових задач лінійного програмування на площині.
- •27.Загальна характеристика методів розв’язування цілочислових задач лінійного програмування
- •28.Методи відтинання. Метод Гоморі.
- •29.Комбінаторні методи. Метод гілок і меж.
- •30.Економічна постановка і математична модель транспортної задачі.
- •31.Необхідна і достатня умова існування розв’язку транспортної задачі.
- •32.Методи побудови опорного плану. Випадок виродження.
- •33.Критерій оптимальності опорного плану транспортної задачі.
- •34.Метод потенціалів розв’язування транспортної задачі.
- •39.Основні труднощі розв’язання т-задач.
- •40Постановка знп. Умовні та безумовні нелінійні задачі
- •41.Геометрична інтерпретація знп.
- •43.Графічний метод розв’язання нелінійних задач.
- •44.Метод множників Лагранжа.
- •45.Основні труднощі розв’язання знп.
15.Графічний метод розв’язування лінійних оптимізаційних задач.
Для розв’язування двовимірних задач лінійного програмування, тобто задач із двома змінними, а також деяких тривимірних задач застосовують графічний метод, що ґрунтується на геометричній інтерпретації та аналітичних властивостях задач лінійного програмування. Обмежене використання графічного методу зумовлене складністю побудови багатогранника розв’язків у тривимірному просторі (для задач з трьома змінними), а графічне зображення задачі з кількістю змінних більше трьох взагалі неможливе.
Розглянемо задачу.
Знайти
Припустимо, що система сумісна і багатокутник її розв’язків обмежений.
Згідно
з геометричною інтерпретацією задачі
лінійного програмування кожне і-те
обмеження-нерівність визначає півплощину
з граничною прямою
(і
= 1, 2, …, т).
Системою обмежень графічно можна
зобразити спільну частину, або переріз
усіх зазначених півплощин, тобто множину
точок, координати яких задовольняють
всі обмеження задачі — багатокутник
розв’язків.
Умова невід’ємності змінних означає, що область допустимих розв’язків задачі належить першому квадрату системи координат двовимірного простору. Цільова функція задачі лінійного програмування геометрично інтерпретується як сім’я паралельних прямих с1х1 + с2х2 = const.
Скористаємося для графічного розв’язання ЗЛП властивостями:
якщо задача лінійного програмування має оптимальний план, то екстремального значення цільова функція набуває в одній із вершин її багатокутника розв’язків. Якщо ж цільова функція досягає екстремального значення більш як в одній вершині багатокутника, то вона досягає його і в будь-якій точці, що є лінійною комбінацією цих вершин.
Отже, розв’язати задачу лінійного програмування графічно означає знайти таку вершину багатокутника розв’язків, у результаті підстановки координат якої в лінійна цільова функція набуває найбільшого (найменшого) значення.
Алгоритм графічного методу розв’язування задачі лінійного програмування складається з таких кроків:
1. Будуємо прямі, рівняння яких дістаємо заміною в обмеженнях задачі знаків нерівностей на знаки рівностей.
2. Визначаємо півплощини, що відповідають кожному обмеженню задачі.
3. Знаходимо багатокутник розв’язків задачі лінійного програмування.
4. Будуємо
вектор
,
що задає напрям зростання значення
цільової функції задачі.
5. Будуємо
пряму с1х1 + с2х2
= const, перпендикулярну до вектора
.
6. Рухаючи
пряму с1х1 + с2х2
= const в напрямку вектора
(для
задачі максимізації) або в протилежному
напрямі (для задачі мінімізації),
знаходимо вершину багатокутника
розв’язків, де цільова функція набирає
екстремального зна- чення.
7. Визначаємо координати точки, в якій цільова функція набирає максимального (мінімального) значення, і обчислюємо екстремальне значення цільової функції в цій точці.
16.Симплексний метод розв’язування задач лінійного програмування.
Задачі, що описують реальні економічні процеси, мають велику розмірність, і простий перебір всіх опорних планів таких задач є дуже складним, навіть за умови застосування сучасних ЕОМ. Тому необхідне використання методу, який уможливлював би скорочення кількості обчислень. 1949 року такий метод був запропонований американським вченим Дж. Данцігом — так званий симплексний метод, або симплекс-метод.
Ідея цього методу полягає в здійсненні спрямованого перебору допустимих планів у такий спосіб, що на кожному кроці здійснюється перехід від одного опорного плану до наступного, який за значенням цільової функції був би хоча б не гіршим за попередній. Значення функціонала припереході змінюється в потрібному напрямку: збільшується (для задачі на максимум) чи зменшується (для задачі на мінімум).
Процес розв’язання задачі симплекс-методом має ітераційний характер: однотипні обчислювальні процедури (ітерації) повторюються у певній послідовності доти, доки не буде отримано оптимальний план задачі або з’ясовано, що його не існує.
Отже, симплекс-метод — це ітераційна обчислювальна процедура, яка дає змогу, починаючи з певного опорного плану, за скінченну кількість кроків отримати оптимальний план ЗЛП. Симплекс-метод - поетапна обчисл-на процедура, в основу якої покладено принцип послідовного поліпш-я значень цільової функції переходом від одного опорного плану ЗЛП до іншого.