Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОММ ШПОРА.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
247.09 Кб
Скачать

10.Класифікація задач математичного програмування.

У математичному програмуванні виділяють два напрямки — детерміновані задачі і стохастичні. Детерміновані задачі не містять випадкових змінних чи параметрів. Уся початкова інформація повністю визначена. У стохастичних задачах використовується вхідна інформація, яка містить елементи невизначеності, або деякі параметри набувають значень відповідно до визначених функцій розподілу випадкових величин. Наприклад, якщо в економіко-математичній моделі врожайності сільськогосподарських культур задані своїми математичними сподіваннями, то така задача є детермінованою. Якщо ж врожайності задані функціями розподілу, наприклад нормального з математичним сподіванняма і дисперсією D, то така задача є стохастичною.

Якщо у відповідних економічних процесах випадкові явища не відіграють істотної ролі, то задачу можна розв’язувати як детерміновану. У іншому разі адекватна економіко-математична модель має бути стохастичною, тобто містити випадкові функції та величини. Структура та розв’язування таких задач вивчаються в окремому розділі, який називається стохастичним програмуванням.

Кожен з названих напрямків включає типи задач математичного програмування, які в свою чергу поділяються на інші класи

11.Приклади побудови лінійних оптимізаційних математичних моделей економічних систем.

Задача оптимального розподілу виробничих потужностей: розглядаються кілька підприємств, що виготовляють певну кількість видів продукції. Відомі фонд робочого часу кожного підприємства; потреби в продукції кожного виду; матриця потужностей виробництва всіх видів продукції, що виготовляються на кожному підприємстві, а також собівартості виробництва одиниці продукції кожного підприємства. Необхідно розподілити виробництво продукції між підприємствами у такий спосіб, щоб задовольнити потреби у виготовленні продукції та максимально використати виробничі потужності підприємств.

Критерій оптимальності: мінімальні сумарні витрати на виготовлення продукції.

Задача про призначення: нехай набір деяких видів робіт може виконувати певна чисельність кандидатів, причому кожного кандидата можна призначати лише на одну роботу і кожна робота може бути виконана тільки одним кандидатом. Відома матриця, елементами якої є ефективності (у вибраних одиницях) кожного претендента на кожній роботі. Розв’язком задачі є оптимальний розподіл кандидатів на посади.

Критерій оптимальності: максимальний сумарний ефект від виконання робіт.

Задача комівояжера: розглядається кілька міст. Комівояжеру необхідно, починаючи з міста, в якому він перебуває, обійти, не буваючи ніде двічі, всі міста і повернутися в початкове. Відома матриця, елементи якої — вартості пересування (чи відстані) між всіма попарно пунктами подорожі. Знайти оптимальний маршрут.

Критерій оптимальності: мінімальна сумарна вартість (відстань) пересування по маршруту.

Задача оптимального розподілу капіталовкладень. Планується діяльність групи (системи) підприємств протягом деякого періоду, який розділено на певну кількість підперіодів. Задана сума коштів, які можна вкладати в будь-яке підприємство чи розподіляти між ними протягом всього періоду планування. Відомі величини збільшення виробництва продукції (за умови здійснення додаткових капіталовкладень) у кожному з підприємств групи для всіх підперіодів. Необхідно визначити, як розподіляти кошти на початку кожного підперіоду між підприєм­ствами так, щоб сумарний дохід за весь період був макси­мальним.