
- •1.Економіка як об’єкт моделювання.
- •2.Моделювання як метод пізнання дійсності.
- •3.Особливості та принципи математичного моделювання економічних систем і процесів.
- •4.Випадковість і невизначеність процесів економічних систем.
- •5.Адекватність економіко-математичних моделей.
- •6.Класифікація економіко-математичних моделей.
- •7.Сутність оптимізаційних моделей і методів.
- •8.Математичне програмування.
- •9.Математична постановка оптимізаційних задач.
- •10.Класифікація задач математичного програмування.
- •11.Приклади побудови лінійних оптимізаційних математичних моделей економічних систем.
- •12.Загальна лінійна оптимізаційна математична модель. Лінійне програмування.
- •13.Форми запису лінійних оптимізаційних задач.
- •14.Геометрична інтерпретація лінійних оптимізаційних моделей.
- •15.Графічний метод розв’язування лінійних оптимізаційних задач.
- •16.Симплексний метод розв’язування задач лінійного програмування.
- •17.Алгоритм розв’язування задачі лінійного програмування симплексним методом.
- •18.Метод штучного базису.
- •19.Економічна інтерпретація пари двоїстих задач лінійного програмування.
- •20.Правила побудови двоїстих моделей оптимізаційних задач.
- •21.Основні теореми двоїстості та їх економічний зміст.
- •22.Приклади застосування теорії двоїстості для знаходження оптимальних планів прямої та двоїстої оптимізаційних задач.
- •23.Оцінка рентабельності продукції, яка виробляється.
- •24.Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- •25.Економічна постановка і математичні моделі задач з цілочисловими змінними.
- •26.Геометрична інтерпретація розв’язків цілочислових задач лінійного програмування на площині.
- •27.Загальна характеристика методів розв’язування цілочислових задач лінійного програмування
- •28.Методи відтинання. Метод Гоморі.
- •29.Комбінаторні методи. Метод гілок і меж.
- •30.Економічна постановка і математична модель транспортної задачі.
- •31.Необхідна і достатня умова існування розв’язку транспортної задачі.
- •32.Методи побудови опорного плану. Випадок виродження.
- •33.Критерій оптимальності опорного плану транспортної задачі.
- •34.Метод потенціалів розв’язування транспортної задачі.
- •39.Основні труднощі розв’язання т-задач.
- •40Постановка знп. Умовні та безумовні нелінійні задачі
- •41.Геометрична інтерпретація знп.
- •43.Графічний метод розв’язання нелінійних задач.
- •44.Метод множників Лагранжа.
- •45.Основні труднощі розв’язання знп.
3.Особливості та принципи математичного моделювання економічних систем і процесів.
Математична модель- це абстракція реальної дійсності, в якій відношення між реальними елементами, , замінені відношеннями між мат категоріями. Ці відношення зазвичай подаються у формі рівнянь і/чи нерівностей, відношеннями формальної логіки між показниками (змінними), які характеризують функціонування реальної системи, що моделюється.
Сутність методології мат. моделювання полягає в заміні вихідного об'єкта його «образом» - математичною моделлю - і подальшим вивченням (дослідженням) моделі на підставі аналітичних методів та обчислювально-логічних алгоритмів, які реалізуються за допомогою комп'ютерних програм. Робота не із самим об'єктом (явищем, процесом), а з його моделлю дає можливість відносно швидко і безболісно досліджувати його основні (суттєві) властивості та поводження за будь-яких імовірних ситуацій (цє переваги теорії). Водночас обчислювальні експерименти з моделями об'єктів дозволяють, спираючись па потужність сучасних математичних та обчислювальних методів і технічного інструментарію інформатики, ретельно та досить глибоко вивчати об"єкт у достатньо детальному вигляді, що недоступно сутотеоретичним підходам (це перевага експерименту).
Універсальних методів побудови ЕММ не існує але існує ряд вимог:
Адекватність – «Модель» повинна бути адекватною «об'єктові» й відображати з певною точністю основні його риси та властивості залежно від цілей дослідження, наявної інформації, прийнятної системи гіпотез. Має адекватно описувати реальні технологічні та економічні процеси. У моделі потрібно враховувати все істотне, суттєве в досліджуваному явищі чи процесі, нехтуючи всім другорядним, неістотним у ньому.
Об’єктивність – відповідність результатів моделювання в реальних умовах.
Простота – має бути зрозумілою для користувача, зручною для реалізації на ЕОМ
Чутливість – здатність моделі реагувати на зміну початкових параметрів
Універсальність – модель може бути використана для дослідження кількох об’єктів чи вик кількох задач.
Необхідно, щоб множина змінних xj була не порожньою. З цією метою в економіко-математичних моделях за змоги слід уникати обмежень типу «=», а також суперечливих обмежень.
4.Випадковість і невизначеність процесів економічних систем.
Для методології планування важливе значення має поняття невизначеності економічного розвитку. В дослідженнях з економічного прогнозування і планування розрізняють два типи невизначеності: «істинну», зумовлену властивостями економічних процесів, і інформаційну, пов’язану з неповнотою і неточністю наявної інформації про ці процеси. Істинну невизначеність не можна плутати з об’єктивним існуванням різних варіантів економічного розвитку і можливості свідомого вибору з-поміж них ефективних варіантів. Ідеться про принципову неможливість точного вибору єдиного оптимального варіанта.
У розвитку економіки невизначеність викликається двома головними причинами.
1. перебіг планованих і керованих процесів, а також зовнішній вплив на ці процеси не можуть бути точно передбаченими через вплив випадкових чинників і обмеженість людського пізнання в кожний момент. Особливо характерно це для прогнозування науково-технічного прогресу, потреб суспільства, економічної поведінки.
2. Загальнодержавне планування й управління не лише не всеохоплюючі, але і не всесильні, а наявність множини самостійних економічних суб’єктів з особливими інтересами не дозволяє точно передбачити результати їх взаємодії. Неповнота і неточність інформації про об’єктивні процеси й економічну поведінку підсилює істинну невизначеність.
На перших етапах дослідження з моделювання економіки застосовувались в основному моделі детермінованого типу. У цих моделях усі параметри вважалися точно відомими. Однак детерміновані моделі не можна сприймати механічно й ототожнювати з моделями, які позбавлені всіх ступенів вибору (можливості вибору) і мають єдиний допустимий розв’язок. Унаслідок накопичення досвіду використання жорстко детермінованих моделей були створені реальні можливості успішного застосування більш досконалої методології моделювання економічних процесів, які враховують стохастику і невизначеність. Тут можна виокремити два основних напрями дослідження. По-перше, вдосконалюється методика використання моделей жорстко детермінованого типу: проведення багатоваріантних розрахунків і модельних експериментів з варіацією конструкції моделі та її вихідних варіантів; визначення стійкості та надійності одержуваних рішень, виокремлення зони невизначеності; включення в модель змінних щодо резервів, застосування прийомів, які підвищують пристосовуваність економічних рішень до ймовірних і непередбачуваних ситуацій. По-друге, формують моделі, які безпосередньо відображають стохастику і невизначеність економічних процесів і використовують відповідний математичний апарат: теорію ймовірностей і математичну статистику, теорію гри і статистичних рішень, теорію масового обслуговування, стохастичне програмування, теорію випадкових процесів, теорію нечітких множин тощо.