Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОММ ШПОРА.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
247.09 Кб
Скачать

3.Особливості та принципи математичного моделювання економічних систем і процесів.

Математична модель- це абстракція реальної дійсності, в якій відношення між реальними елементами, , замінені відношеннями між мат категоріями. Ці відношення зазвичай подаються у формі рівнянь і/чи нерівностей, відношеннями формальної логіки між показниками (змінними), які характеризують функціонування реальної системи, що моделюється.

Сутність методології мат. моделювання полягає в заміні вихідного об'єкта його «образом» - математичною моделлю - і подальшим вивченням (дослідженням) моделі на підставі аналітичних методів та обчислювально-логічних алгоритмів, які реалізуються за допомогою комп'ютерних програм. Робота не із самим об'єктом (явищем, процесом), а з його моделлю дає можливість відносно швидко і безболісно досліджувати його основні (суттєві) властивості та поводження за будь-яких імовірних ситуацій (цє переваги теорії). Водночас обчислювальні експерименти з моделями об'єктів дозволяють, спираючись па потужність сучасних математичних та обчислювальних методів і технічного інструментарію інформатики, ретельно та досить глибоко вивчати об"єкт у достатньо детальному вигляді, що недоступно сутотеоретичним підходам (це перевага експерименту).

Універсальних методів побудови ЕММ не існує але існує ряд вимог:

  1. Адекватність – «Модель» повинна бути адекватною «об'єктові» й відображати з певною точністю основні його риси та властивості залежно від цілей дослідження, наявної інформації, прийнятної системи гіпотез. Має адекватно описувати реальні технологічні та економічні процеси.  У моделі потрібно враховувати все істотне, суттєве в досліджуваному явищі чи процесі, нехтуючи всім другорядним, неістотним у ньому.

  2. Об’єктивність – відповідність результатів моделювання в реальних умовах.

  3. Простота – має бути зрозумілою для користувача, зручною для реалізації на ЕОМ

  4. Чутливість – здатність моделі реагувати на зміну початкових параметрів

  5. Універсальність – модель може бути використана для дослідження кількох об’єктів чи вик кількох задач.

  6. Необхідно, щоб множина змінних xj була не порожньою. З цією метою в економіко-математичних моделях за змоги слід уникати обмежень типу «=», а також суперечливих обмежень.

4.Випадковість і невизначеність процесів економічних систем.

Для методології планування важливе значення має поняття невизначеності економічного розвитку. В дослідженнях з економічного прогнозування і планування розрізняють два типи невизначеності: «істинну», зумовлену властивостями економічних процесів, і інформаційну, пов’язану з неповнотою і неточністю наявної інформації про ці процеси. Істинну невизначеність не можна плутати з об’єктивним існуванням різних варіантів економічного розвитку і можливості свідомого вибору з-поміж них ефективних варіантів. Ідеться про принципову неможливість точного вибору єдиного оптимального варіанта.

У розвитку економіки невизначеність викликається двома головними причинами.

1. перебіг планованих і керованих процесів, а також зовнішній вплив на ці процеси не можуть бути точно передбаченими через вплив випадкових чинників і обмеженість людського пізнання в кожний момент. Особливо характерно це для прогнозування науково-технічного прогресу, потреб суспільства, економічної поведінки.

2. Загальнодержавне планування й управління не лише не всеохоплюючі, але і не всесильні, а наявність множини самостійних економічних суб’єктів з особливими інтересами не дозволяє точно передбачити результати їх взаємодії. Неповнота і неточність інформації про об’єктивні процеси й економічну поведінку підсилює істинну невизначеність.

На перших етапах дослідження з моделювання економіки застосовувались в основному моделі детермінованого типу. У цих моделях усі параметри вважалися точно відомими. Однак детерміновані моделі не можна сприймати механічно й ототожнювати з моделями, які позбавлені всіх ступенів вибору (можливості вибору) і мають єдиний допустимий розв’язок. Унаслідок накопичення досвіду використання жорстко детермінованих моделей були створені реальні можливості успішного застосування більш досконалої методології моделювання економічних процесів, які враховують стохастику і невизначеність. Тут можна виокремити два основних напрями дослідження. По-перше, вдосконалюється методика використання моделей жорстко детермінованого типу: проведення багатоваріантних розрахунків і модельних експериментів з варіацією конструкції моделі та її вихідних варіантів; визначення стійкості та надійності одержуваних рішень, виокремлення зони невизначеності; включення в модель змінних щодо резервів, застосування прийомів, які підвищують пристосовуваність економічних рішень до ймовірних і непередбачуваних ситуацій. По-друге, формують моделі, які безпосередньо відображають стохастику і невизначеність економічних процесів і використовують відповідний математичний апарат: теорію ймовірностей і математичну статистику, теорію гри і статистичних рішень, теорію масового обслуговування, стохастичне програмування, теорію випадкових процесів, теорію нечітких множин тощо.