Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия ответы билеты.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
555.76 Кб
Скачать

Валентные углы

Направление ковалентных связей характеризуется валентными углами - углами между линиями, соединяющими связываемые атомы. Графическая формула химической частицы не несет информации о валентных углах. Например, в сульфат-ионе SO42− валентные углы между связями сера−кислород равны 109,5o, а в тетрахлоропалладат-ионе [PdCl4]2− − 90o. Совокупность длин связей и валентных углов в химической частице определяет ее пространственное строение. Для определения валентных углов используют экспериментальные методы изучения структуры химических соединений. Оценить значения валентных углов можно теоретически, исходя из электронного строения химической частицы.

9. Гибридизация волновых функций. Типы гибридизации. Пространственное строение молекулы.

ВОЛНОВАЯ ФУНКЦИЯ - функция, позволяющая найти вероятность того, что квантовая система находится в некотором состоянии s в момент времени t. Обычно пишется: (s) или (s, t). Волновая функция используется в уравнении ШРЁДИНГЕРА.

При возбуждении атомов в ходе их сближения изменяются волновые функции всех валентных электронов, причем возникают новые волновые функции. Эти новые волновые функции являются гибридными, а само явление называется гибридизацией волновых функций (или гибридизацией атомных орбит). Гибридизация атомных s- и p-орбиталей обеспечивает большее перекрытие электронных орбит соединяющихся атомов, чем в случае негибридных волновых функций. Благодаря этому не только упрочняются связи, но и понижается энергия системы (кристалла). В зависимости от того, сколько p-орбиталей гибридизируется, различают sp1-, sp2- и sp3-гибридные орбиты. В случае sp1-гибридизации гибридные орбиты ориентированы по прямой линии в противоположные стороны, т. е. составляют угол 180о. sp2-гибридизация предполагает связи, находящиеся в одной плоскости под углом 120о одна к другой. Для sp3-гибридизации характерно образование связей в тетраэдрическом виде в четырех направлениях под углом

Четыре типа таких конфигураций проиллюстрировано на рисунке ниже,три из которых представляют -связь и одна -связь

 

Четыре типа перекрытий волновых функций, иллюстрирующие - и -связи в двухатомной молекуле

Обычно значения энергии -связи выше, чем значения энергии -связи. Характерные значения энергии - и -связи для углерода, кремния, германия и арсенида галлия составляют Vsp=5,91; 2,54; 2,36; 2,36 эВ; Vpp=2,60; 1,12; 1,04; 1,04 эВ соответственно.

Часто химические связи образуются за счёт электронов, расположенных на разных атомных орбиталях (например, s – и р – орбитали). Несмотря на это, связи оказываются равноценными и расположены симметрично, что обеспечено гибридизацией атомных орбиталей.

 Гибридизация орбиталей - это изменение формы некоторых орбиталей при образовании ковалентной связи для достижения более эффективного перекрывания орбиталей.

 В результате гибридизации появляются новые гибридные орбитали, которые ориентируются в пространстве таким образом, чтобы после их перекрывания с орбиталями других атомов образующиеся электронные пары оказались максимально удалёнными друг от друга. Это сводит к минимуму энергию отталкивания электронов в молекуле.

Гибридизация не является реальным процессом. Это понятие введено для описания геометрической структуры молекулы. Форма частиц, возникающих при образовании ковалентных связей, в которых участвуют гибридные атомные орбитали, зависит от числа и типа этих орбиталей. При этом σ – связи создают жёсткий «скелет» частицы:

Орбитали участвующие в гибридизации

Тип гибридизации

Пространственная форма молекулы

Примеры

s, p

sp – гибридизация

Линейная

BeCl2

CO2

C2H2

Две sp - орбитали могут образовывать две σ - связи (BeH2, ZnCl2). Еще две p- связи могут образоваться, если на двух p - орбиталях, не участвующих в гибридизации, находятся электроны (ацетилен C2H2).

s, p, p

sp2 – гибридизация

Треугольная (плоская тригональная)

BH3

BF3

C2H4

Если связь образуется при перекрывании орбиталей по линии, соединяющей ядра атомов, она называется σ - связью. Если орбитали перекрываются вне линии, соединяющей ядра, то образуется  π - связь. Три sp2- орбитали могут образовывать три σ - связи (BF3, AlCl3). Еще одна связь (π - связь) может образоваться, если на p- орбитали, не участвующей в  гибридизации, находится электрон (этилен C2H4).

s, p, p, p

sp3 – гибридизация

Тетраэдрическая

СH4

NH4+

PO43-

BF4-

На практике вначале экспериментально устанавливают геометрическую структуру молекулы, после чего описывают тип и форму атомных орбиталей, участвующих в её образовании. Например, пространственная структура молекул аммиака и воды близка к тетраэдрической, но угол между связями в молекуле воды равен 104,5˚, а в молекуле NH3 – 107,3˚

10) Полярная и неполярная ковалентные связи. Эффективные заряды атомов в молекулах. Ионная связь как крайний случай поляризации ковалентной связи. Если двухатомная молекула состоит из атомов одного элемента, как, например, молекулы H2, O2 и т. п., то каждое электронное облако, образованное общей парой электронов и осуществляющее ковалентную связь, распределяется в пространстве симметрично относительно ядер обоих атомов. В подобном случае ковалентная связь называется неполярной или гомеополярной. Если же двухатомная молекула состоит из атомов различных элементов, то общее электронное облако смещено в сторону одного из атомов, так что возникает асимметрия в распределении заряда. В таких случаях ковалентная связь называется полярной или гетерополярной. Для оценки способности атома данного элемента оттягивать к себе общую электронную пару пользуются величиной относительной электроотрицательности. Чем больше электроотрицателыюсть атома, тем сильнее притягивает он общую электронную пару. Иначе говоря, при образовании ковалентной связи между двумя атомами разных элементов общее электронное облако смещается к более электроотрицательному атому, и в тем большей степени, чем больше различаются элекгроотрицательности взаимодействующих атомов. Значения электроотрицательности атомов некоторых элементов по отношению к электроотрицательности фтора, которая принята равной 4. электроотрицательпость закономерно изменяется в зависимости от положения элемента в периодической системе. В начале каждого периода находятся элементы с наиболее низкой электроотрицателькостыо — типичные металлы, в конце периода (перед благородными газами) - элементы с наивысшей электроотрицательностью, т. е. типичные неметаллы. У элементов одной и той же подгруппы злектроотрицательность с ростом заряда ядра проявляет тенденцию к уменьшению. Таким образом, чем более типичным металлом является элемент, тем ниже его злектроотрицательность; чем более типичным неметаллом является элемент, тем выше его злектроотрицательность. Смещение общего электронного облака при образовании полярной ковалентной связи приводит к тому, что средняя плотность отрицательного электрического заряда оказывается выше вблизи более электроотрицательного атома и ниже — вблизи менее электроотрицательного. В результате первый атом приобретает избыточный отрицательный, а второй — избыточный положительный заряд; эти заряды принято называть эффективными зарядами атомов в молекуле. Так, в молекуле хлороводорода общая электронная пара смещена в сторону более электроотрицательного атома хлора, что приводит к появлению у атома хлора эффективного отрицательного заряда, равного 0,17 заряда электрона, а у атома водорода такого же по абсолютной величине эффективного положительного заряда. Следовательно, молекула HCl является полярной молекулой. Ее можно рассматривать как систему из двух равных по абсолютной величине, но противоположных по знаку зарядов, расположенных на определенном расстоянии друг от друга. Такие системы называются электрическими диполями. Хотя суммарный заряд диполя равен нулю, в окружающем его пространстве образуется электрическое поле. Напряженность этого поля пропорциональна дипольному моменту молекулы мю, представляющему собой произведение абсолютного значения заряда электрона q на расстояние l между центрами положительного и отрицательного зарядов в молекуле: Дипольный момент молекулы служит количественной мерой ее полярности. Дипольные моменты молекул обычно измеряют в дебаях (D), 1D=3,33*10^-30Кл*м.

Молекула тем более полярна, чем больше смещена общая электронная пара к одному из атомов, т. е. чем выше эффективные заряды атомов и чем больше длина диполя l. Поэтому в ряду сходно построенных молекул дипольный момент возрастает по мере увеличения разности электроотрицательностей атомов, образующих молекулу. Например, дипольные моменты HCl, HBr и HIравны соответственно 1,04; 0,79 и 0,38 D, что связано с уменьшением разности электроотрицательностей атомов при переходе от HCl к HBr и HI .

Многоатомные молекулы также могут быть неполярными — при симметричном распределении зарядов или полярными — при ассиметричном распределении зарядов. В последнем случае дипольный момент молекулы будет отличаться от нуля. Каждой связи в многоатомной молекуле можно приписать определенный дипольный момент, характеризующий ее полярность; при атом следует принимать во внимание не только величину дипольного момента, по и его направление, т. е. рассматривать дипольный момент каждой связи как вектор. Тогда суммарный дипольный момент молекулы в целом можно считать равным векторной сумме дипольных моментов отдельных связей. Дипольный момент обычно принято считать направленным от положительного конца диполя к отрицательному.

Дипольные моменты молекул можно экспериментально определять путем измерения некоторых макроскопических свойств соответствующего вещества, например, его диэлектрической проницаемости. Найденные таким образом значения дипольных моментов содержат важную информацию о геометрической структуре молекул.

Полярность молекул оказывает заметное влияние на свойства образуемых ими веществ. Полярные молекулы стремятся ориентироваться по отношению друг к другу разноименно заряженными концами. Следствием такого диполь-дипольного взаимодействия является взаимное притяжение полярных молекул и упрочнение связи между ними. Поэтому вещества, образованные полярными молекулами, обладают, как правило, более высокими температурами плавления и кипения, чем вещества, молекулы которых неполярны.

При растворении вещества, состоящего из полярных молекул пли имеющего ионное строение, в жидкости, также составленной из полярных молекул, между молекулярными диполями растворителя и молекулами или кристаллами растворяемого вещества возникают электростатические силы диполь-дипольного или ион-дипольного взаимодействия, способствующие распаду растворяемого вещества на ионы (см. § 83). Поэтому жидкости, состоящие из полярных молекул, проявляют свойства ионизирующих растворителей, т. е. способствуют электролитической диссоциации растворенных в них веществ.

Ионная связь. Связь такого типа осуществляется в результате взаимного электростатического притяжения противоположно заряженных ионов. Ионы могут быть простыми, т. е. состоящими из одного атома (например, катионы Na+ K+, анионы F-, Cl-), или сложными, т. е. состоящими из двух или более атомов, (например, катион NH4+, анионы SO2-, OH-). Простые ионы, обладающие положительным зарядом, легче всего образуются из атомов элементов с низким потенциалом ионизации; к таким элементам относятся металлы главных подгрупп I и II группы.

В отличие от ковалентной связи, ионная связь не обладает направленностью, Это объясняется тем, что электрическое поле иона обладает сферической симметрией, т. е. убывает с расстоянием по одному и тому же закону в любом направлении. Поэтому взаимодействие между ионами осуществляется одинаково независимо от направления. Как уже отмечалось выше, система из двух зарядов, одинаковых по абсолютной величине, но противоположных по знаку, создает в окружающем пространстве электрическое поле. Это означает, что два разноименных иона, притянувшиеся друг к другу, сохраняют способность электростатически взаимодействовать с другими ионами. В этом состоит еще одно различие между ионным и ковалентным типами связи: ионная связь не обладает насыщаемостью. Поэтому к данному иону может присоединиться различное число ионов противоположного знака. Это число определяется относительными размерами взаимодействующих ионов, а также тем, что силы притяжения разноименно заряженных ионов должны преобладать над силами взаимного отталкивания, действующими между ионами одного знака.

Отсутствие у ионной связи направленности и насыщаемости обусловливает склонность ионных молекул к ассоциации, т. е. к соединению их друг с другом. При высоких температурах кинетическая энергия движения молекул преобладает над энергией их взаимного притяжения: поэтому в газообразном состоянии ионные соединения существуют в основном в виде неассоциированных молекул. Но при понижении температуры, при переходе в жидкое и, особенно, в твердое состояние ассоциация ионных соединений проявляется сильно. Все ионные соединения в твердом состоянии имеют не молекулярную, а ионную кристаллическую решетку, в которой каждый ион окружен несколькими ионам» противоположного знака. При этом все связи данного иона с соседними ионами равноценны, так что весь кристалл можно рассматривать как единую гигантскую «молекулу».

12) межмолекулярное взаимодействие. Когда вещество находится в газообразном состоянии, тогда образующие его частицы — молекулы или атомы — хаотически движутся и при этом преобладающую часть времени находятся на больших (в сравнении с их собственными размерами) расстояниях друг от друга. Вследствие этого силы взаимодействия между ними пренебрежимо малы.

Иначе обстоит дело, когда вещество находится в конденсированном состоянии — в жидком или в твердом. Здесь расстояния между частицами вещества малы и силы взаимодействия между ними велики. Эти силы удерживают частицы жидкости или (твердого тела друг около друга. Поэтому вещества в конденсированном состоянии имеют, в отличие от газов, постоянный при данной температуре объем.

Силы, удерживающие частицы жидкости или твердого тела друг около друга, имеют электрическую природу. Но в зависимости от того, что представляют собой частицы — являются ли они атомами металлического или неметаллического элемента, ионами или молекулами, — эти силы существенно различны.

Если вещество построено из атомов, но не является металлом, то его атомы обычно связаны друг с другом ковалентной связью. Если вещество — металл, то часть электронов его атомов становятся общими для всех атомов; эти электроны свободно движутся между атомами, связывая их друг с другом. Если вещество имеет ионное строение, то образующие его ионы удерживаются друг около друга силами электростатического притяжения

Силы межмолекулярного взаимодействия, называемые также силами Ван-дер-Ваальса, слабее ковалентных сил, но проявляются на больших расстояниях. В основе их лежит электростатическое взаимодействие диполей, но в различных веществах механизм возникновения диполей различен

водородная связь. В настоящее время установлено, что эти и некоторые другие особенности указанных соединений объясняются способностью атома водорода, соединенного с атомом сильно электроотрицательного элемента, к образованию еще одной химической связи с другим подобным атомом. Эта связь называется водородной. Возникновение водородной связи можно в первом приближении объяснить действием электростатических сил. Так, при образовании полярной ковалентной связи между атомом водорода и атомом фтора, который характеризуется высокой электроотрицательностью, электронное облако, первоначально принадлежавшее атому водорода, сильно смещается к атому фтора. В результате атом фтора приобретает значительный эффективный отрицательный заряд, а ядро атома водорода (протон) с «внешней» по отношению к атому фтора стороны почти лишается электронного облака. Между протоном атома водорода и отрицательно заряженным атомом фтора соседней молекулы HF возникает электростатическое притяжение, что и приводит к образованию водородной связи. Это обусловлено тем, что, обладая ничтожно малыми размерами и, в отличие от других катионов, не имея внутренних электронных слоев, которые отталкиваются отрицательно заряженными атомами, ион водорода (протон) способен проникать в электронные оболочки других атомов.

Процесс образования водородной связи при взаимодействии двух молекул HF может быть представлен следующей схемой: