
- •1. Цели и задачи
- •2. Содержание
- •3. Порядок и методика выполнения
- •4. Компоновка конструктивных схем здания
- •5. Плита перекрытия
- •5.1. Общие сведения
- •5.2. Конструктивная схема здания
- •5.3. Пример проектирования ребристой панели
- •5.3.1. Исходные данные
- •5.3.2. Расчетный пролет и нагрузка
- •5.3.3. Статический расчет панели перекрытия
- •5.3.4. Компоновка поперечного сечения панели
- •5.3.5. Расчёт прочности элементов панели по нормальным сечениям
- •5.3.6. Расчет прочности сечений, наклонных к продольной оси элемента
- •5.3.7. Расчет верхней полки на местный изгиб
- •5.3.8. Расчет панели перекрытия по предельным состояниям второй группы
- •5.3.8.1. Геометрические характеристики приведенных сечений
- •5.3.8.2. Потери предварительного напряжения арматуры
- •5.3.8.3. Расчет по образованию трещин, нормальных к продольной оси
- •5.3.8.4. Расчет по раскрытию трещин, нормальных к продольной оси
- •5.3.8.5. Расчет по деформациям
- •6.Проектирование ригелей
- •6.1. Статический расчет
- •6.2. Последовательность построения эпюры арматуры
- •6.3.Указания по конструированию ригелей
- •6.4. Пример расчета неразрезного ригеля
- •6.4.1. Исходные данные
- •6.4.2. Расчетные пролеты и нагрузки
- •6.4.3. Расчет ригеля с использованием программы «scad»
- •6.4.4. Определение усилий в сечениях ригеля от расчетных нагрузок по табличной форме
- •6.4.5. Проверка принятой высоты сечения
- •6.4.6. Подбор сечений продольной арматуры по изгибающим моментам
- •6.4.7. Расчет прочности наклонных сечений по поперечной силе
- •6.4.8. Построение эпюры арматуры
- •6.4.9. Определение длины заделки стержней рабочей арматуры за места теоретического обрыва
- •6.4.10. Проектирование опорного стыка
- •6.4.11. Особенности расчета прочности ригеля таврового сечения с полкой в растянутой зоне
- •7. Проектирование сборных железобетонных колонн
- •7.1. Общие указания
- •7.2. Расчетная схема и расчетные длины колонн
- •7.3. Подсчет нагрузок на колонны
- •7.4. Определение расчетных продольных сил в сечениях колонн
- •7.5. Определение площади продольной арматуры в колоннах
- •7.6. Расчет и конструирование консоли колонны
- •7.7. Пример расчета колонны
- •7.7.1. Исходные данные.
- •7.7.2. Определение расчетных усилий
- •7.7.3. Расчетные схемы и длины колонн
- •7.7.4. Расчет колонн на прочность
- •7.7.5. Расчет сборных элементов многоэтажной колонны на усилия в период транспортирования и монтажа
- •7.7.6. Расчет консоли колонны
- •7.7.7. Расчет стыковых соединений
- •8. Проектирование отдельного центрально-нагруженного фундамента
- •8.1. Общие указания
- •8.2. Эскизное конструирование фундаментов
- •8.3. Расчет железобетонного фундамента
- •8.4. Пример расчета железобетонного центрально-нагруженного фундамента под колонну
- •Задание к курсовому проекту «железобетонные конструкции»
- •Библиографический список
- •Оглавление
- •1. Цели и задачи…………………………………………………………...3
- •2. Содержание……………………………………………………………..3
- •660041 Красноярск, пр. Свободный, 82.
6.4.3. Расчет ригеля с использованием программы «scad»
Для расчета ригеля необходимо выполнить статический расчет поперечной рамы. Принимаем жесткую связь ригеля с колоннами и фундаментом поперечника здания во всех узлах (рис. 5). Сечение колонны назначаем 35x35 см на всех этажах. На расчетной схеме (рис. 5) линии стержней представляют продольные оси, проходящие через центр тяжести поперечных сечений. Расчет рамы выполняем по трем схемам загружения, где постоянные нагрузки суммируются с вариантами загружения временных нагрузок. Варианты временных нагрузок принимаем по аналогии схем загружения, представленным в табл. 3 и 4. Временную эксплуатационную нагрузку учитываем на всех перекрытиях и принимаем равномерно распределенной по всей площади согласно табл. 5 и заданию на курсовой проект.
Рис.5. Расчетная схема рамы: 1,2... 15,16 - номера узлов; I,II- типы жесткости стержней
Жесткость ригеля принимаем условно для прямоугольного сечения размером 35x60 см. Файл результатов расчета на ЭВМ необходимо согласовать с консультантом, проверить равновесие узлов и распределение усилий в стержнях. Изгибающие моменты в стойках должны быть знакопеременными от узла к узлу, продольные сжимающие силы должны увеличиваться книзу. В пролетах ригеля растянуты нижние волокна, на опорах верхние. Распечатку результатов расчета вкладывают в приложение расчетно-пояснительной записки.
Для расчета ригеля принимаем усилия на втором этаже здания, а для колонны на первом этаже. Ригель рассчитываем аналогично примеру по табличной форме с учетом выровненных усилий, полученных по программе «SCAD».
6.4.4. Определение усилий в сечениях ригеля от расчетных нагрузок по табличной форме
Изгибающие моменты и поперечные силы определим отдельно для действия постоянной нагрузки и различных комбинаций временной (табл. 3, 4).
M=(α·g + β·ν) l 2, Q=(γ·g + δ·ν) l ;
Вычисление производим в табличной форме (табл. 3, 4, 5).
По данным табл. 5 построим эпюры изгибающих моментов и поперечных сил для различных комбинаций нагрузок (значения ординат М и Q от постоянной нагрузки входят в каждое сочетание).
Затем производим перераспределение внутренних усилий с учетом пластических деформаций (рис.6) и строим огибающую эпюру моментов по выровненным значениям ординат п. 18.7 [13].
Таблица 3 |
|||||||
Номер схемы |
Схема загружения
|
Изгибающие моменты |
Поперечные силы |
||||
М1 |
М2 |
МВ |
QA |
QЛВ |
QПВ |
||
1 |
|
0,070 |
0,070 |
-0,125 |
0,375 |
-0,625 |
0,625 |
2 |
|
0,096 |
-0,025 |
-0,063 |
0,438 |
-0,562 |
0,062 |
Таблица 4 |
||||||||
Номер схемы |
Схема загружения |
Изгибающие моменты |
Поперечные силы |
|||||
М1 |
М2 |
МВ |
QA |
QЛВ |
QПВ |
|||
1 |
|
0,080 |
0,025 |
-0,100 |
0,400 |
-0,600 |
0,500 |
|
2 |
|
0,101 |
-0,050 |
-0,050 |
0,450 |
-0,550 |
- |
|
3 |
|
-0,025 |
0,075 |
-0,050 |
-0,050 |
-0,050 |
0,500 |
|
4 |
|
- |
- |
-0,117 |
0,383 |
-0,617 |
0,583 |
По полученным результатам расчета выровненных моментов определяем изгибающие моменты на гранях колонны:
МЛгр=МВ - QЛВ·hk/2=369,63-(393,93·0,4/2)=290,84 Кн·м,
МПгр=МВ – QПВ·hk/2=369,63-(363,74·0,4/2)=296,88 Кн·м,
где hk - поперечный размер колонны.