
- •Размещено на http://www.Allbest.Ru/
- •Глава 1 назначение и устройство компрессорных станций
- •1.1 Особенности дальнего транспорта природных газов
- •1.2 Назначение и описание компрессорной станции
- •1.3 Системы очистки технологического газа на кс
- •1.4 Технологические схемы компрессорных станций
- •1.5 Назначение запорной арматуры в технологических обвязках кс
- •1.6 Схемы технологической обвязки центробежного нагнетателя кс
- •1.7 Конструкции и назначения опор, люк-лазов и защитных решеток в обвязке гпа
- •1.8 Системы охлаждения транспортируемого газа на компрессорных станциях
- •1.9 Компоновка газоперекачивающих агрегатов на станции
- •1.10 Система импульсного газа
- •1.11 Система топливного и пускового газа на станции
- •1.13 Типы газоперекачивающих агрегатов, применяемых на кс
- •1.14 Нагнетатели природного газа. Их характеристики
- •1.15 Электроснабжение кс
- •1.16 Водоснабжение и канализация кс
- •1.17 Организация связи на компрессорных станциях
- •1.18 Электрохимзащита компрессорной станции
- •1.19 Грозозащита компрессорной станции
- •Глава 2. Эксплуатация газоперекачивающих агрегатов с газотурбинным приводом
- •2.1 Организация эксплуатации цехов с газотурбинным приводом
- •2.2 Схемы и принцип работы газотурбинных установок
- •2.3 Подготовка гпа к пуску
- •2.4 Проверка защиты и сигнализации гпа
- •2.5 Пуск гпа и его загрузка
- •2.6 Обслуживание агрегата и систем кс в процессе работы
- •2.7 Подготовка циклового воздуха для гту
- •2.8 Очистка осевого компрессора в процессе эксплуатации
- •2.9 Устройство для подогрева всасывающего циклового воздуха
- •2.10 Противопомпажная защита цбн
- •2.11 Работа компрессорной станции при приеме и запуске очистных устройств
- •2.12 Особенности эксплуатации гпа при отрицательных температурах
- •2.13 Система пожаротушения гпа и ее эксплуатация
- •2.14 Вибрация, виброзащита и вибромониторинг гпа
- •2.15 Нормальная и аварийная остановка агрегатов
- •2.16 Остановка компрессорной станции ключом аварийной остановки станции (каос)
- •Глава 3. Показатели надежности, диагностика и снижение энергозатрат газоперекачивающих агрегатов
- •3.1 Показатели надежности газоперекачивающих агрегатов
- •3.2 Техническая диагностика газоперекачивающих агрегатов
- •3.3 Определение технического состояния центробежных нагнетателей
- •3.3.1 Определение фактического политропического кпд нагнетателя
- •3.3.2 Определение паспортного (исходного) кпд нагнетателя
- •3.4 Определение технического состояния гпа с газотурбинным приводом
- •3.5 Диагностирование гпа в процессе работы и при выполнении ремонта
- •3.6 Причины увеличения энергетических затрат на транспорт газа и пути их снижения
- •3.7 Турбодетандер
- •3.8 Применение сменных (регулируемых) входных направляющих аппаратов для изменения характеристик цбн
- •3.9 Измерение расхода газа
1.16 Водоснабжение и канализация кс
Водоснабжение КС осуществляется от артезианских скважин, пробуренных на расстоянии 300-400 метров от забора промплощадки КС. Глубина скважин обычно 70-150 метров. Скважины оборудуются насосами типа ЭЦВ или их аналогами производительностью 6-40 м /сут в зависимости от дебита скважины. Как правило, пробуривается не менее 2 скважин: одна рабочая, другая - резервная. Часть КС получает воду от городских сетей. Вода, получаемая из артезианских скважин, в целом соответствует ГОСТ 2874-82 "Вода питьевая" за исключением повышенного содержания железа и некоторых других компонентов. Для нейтрализации железа, нитратов, органики и т.д. на КС монтируются установки подготовки воды типа "Деферрит" или "Струя". Из артезианских скважин вода по напорному трубопроводу подается в хозяйственные противопожарные емкости. Объем емкостей определяется проектом и составляет от 250 до 500 м . Рядом с емкостями строят насосную 2-го подъема, блочную типа АНПУ-25 или стационарную из кирпича (железобетона). В насосной монтируют хозяйственно-питьевые насосы и пожарные насосы. Хозяйственно-питьевые насосы работают круглосуточно, обеспечивая рабочее давление в трубопроводах в пределах 0,15-0,3 МПа, пожарные насосы включаются при пожаре для повышения давления в сети до 0,6-0,8 МПа и тушения пожара от гидрантов.
Промплощадка
КС оборудуется подземным кольцевым
хозяйственным противопожарным стальным
водопроводом Ду = 100
200 мм. Кольцевой водопровод делится
задвижками на несколько участков для
возможности ремонта без отключения
всего водопровода.
Типовая схема водоснабжения приведена на Рис. 1.42, где 1 - артезианские скважины; 2 - напорный трубопровод; 3 - хозяйственно-противопожарные емкости; 4 - хозяйственные питьевые насосы; 5 - пожарные насосы; 6 - установка подготовки воды с обеззараживающей установкой; 7 - задвижки; 8 - кольцевой водопровод.
Рис. 1.42. Типовая схема водоснабжения КС
Канализация хозяйственных фекальных вод промплощадки КС выполняется из чугунных труб Ду = 100 200 мм на глубине 1,2 м от поверхности земли. Канализация самотечная. Хозяйственные фекальные воды самотеком поступают в приемный резервуар канализационной насосной и оттуда насосами перекачиваются на очистные сооружения типа БИО или иные типы. Очистка сточных вод осуществляется с помощью воздуха, подаваемого высоконапорным компрессором в массу воды. Кислород воздуха окисляет и переводит органические загрязнения в минеральные с образованием СО и НО, одновременно обеспечивая синтез запасных органических веществ и образование новых клеток активного ила. В результате синтеза увеличивается биомасса ила и число микроорганизмов. Доза ила по массе служит ориентировочным показателем того, сколько в иловой смеси потребителей (микроорганизмов) загрязнений. А уже то, что не смогли переработать организмы активного ила, а также песок и соли металлов выпадают в осадок. Степень очистки сточных вод определяется органами Госкомприроды и должна соответствовать разрешенному нормативу предельно допустимого сброса (ПДС). ПДС - это расчетная величина для каждого региона и каждого водоема, куда осуществляется сброс очищенных стоков.
Типовая схема очистных сооружений типа БИО-50 приведена на Рис. 1.43, где 1- решетка, для улавливания крупных отбросов; 2- песколовка, для улавливания песка и мелких неорганических примесей; 3 - первичный отстойник; 4 - аэротенк; 5 - вторичный отстойник; 6 - компрессорная с воздуходувками типа 2АФ49-53; 7 - песчаный фильтр; 8 - установка хлорирования капельного типа "ЛОНИИ"; 9 - контактный колодец, где происходит непосредственное хлорирование.
Рис. 1.43. Типовая схема канализационных очистных сооружений типа БИО-50
Сточные воды, освобожденные от крупных плавающих загрязнений на решетках, поступают на песколовки, которые освобождают сточные воды от песка и частиц размером 0,25-1 мм.
Далее стоки поступают в первичный отстойник, наиболее простой и часто применяемый на практике способ удаления из сточных вод грубодисперсных примесей, которые оседают на дно отстойника или всплывают на поверхность. Основной процесс биологической очистки происходит в аэротенке. Процесс очистки представляет собой непосредственный контакт органических загрязнений с оптимальным количеством организмов активного ила в присутствии соответствующего количества растворенного кислорода в течение необходимого периода времени. Вторичный отстойник применяется для отделения активного ила от биологически очищенной сточной воды.
Установка хлорирования производит обеззараживание очищенной сточной воды.
В настоящее время в П "Мострансгаз" началась замена морально и физически устаревших очистных сооружений типа БИО на очистные сооружения типа ККВ, которые обеспечивают большую степень очистки по БПК-5, фосфору, нитратам.
Теплоснабжение КС
Теплоснабжение помещений КС осуществляется от собственных стационарных (блочных) котельных, оборудованных водогрейными стальными (чугунными) котлами на газе типов HP-18, "Братск", КВА, ТВГ и т.д. мощностью 0,8-8 МВт. Мощность и количество котлов определяются проектом с учетом покрытия тепловых нагрузок в самые сильные морозы и с учетом резервирования. Как правило, это 3-4 котла на промплощадку. Котельные полностью автоматизированы, не имеют постоянного закрепленного персонала и обслуживаются сменным персоналом КС. Компрессорные станции, имеющие постоянно работающие газотурбинные агрегаты, обеспечиваются теплом от утилизаторов ГПА. Утилизатор представляет собой блок из пучка стальных оребренных труб, устанавливаемых в выхлопную шахту ГПА.
Для обеспечения длительной и безаварийной работы котлов и утилизаторов на промплощадке КС устанавливают блоки химводоподготовки (ХВО) или умягчения воды. Это, как правило, система натрий-катионитовых фильтров (1-3 шт.) диаметром Ду = 700 1000 мм, загруженных сульфоуглем или ионообменными смолами. Регенерация фильтров осуществляется с помощью поваренной соли. Мощность ХВО определяется емкостью теплосети и составляет 10-100 м /сутки. Теплотрасса промплощадки КС бывает подземной или надземной. Выполняется из стальной водогазопроводной трубы Ду = 50 200 мм. В последнее время для увеличения срока службы теплотрассы чаще выполняют надземными.
Типовая схема теплоснабжения КС представлена на Рис. 1.44, где 1 - утилизационный теплообменник; 2 - теплообменный модуль; 3 - блок-шибер; 4 - циркуляционный насос; 5 - подпиточный насос; 6 - обратный клапан; 7 - бак-аккумулятор (деаэратор); 8 - насос перекачивающий; 9 - подогреватель обратной воды; 10 - водоподогреватель; 11 - химводоочистка (Na - катионитовая); 12 - обратный клапан; 13 - циркуляционный насос системы ГВС; 14 - обезжелезивающий фильтр; 15 - водяной насос.
Рис. 1.44. Принципиальная тепловая схема теплоснабжения газотурбинных КС.
Условные
обозначения:
- выхлопные газы;
- сетевая вода;
- сырая вода;
- умягченная и деаэрированная вода;
- контур горячего водоснабжения