
- •1.Определение функции и способы ее задания.
- •2.Приближенные числа и действия с ними.
- •3.Предел последовательности.
- •4.Теоремы о пределах последовательностей.
- •5.Предел функции.
- •6.Теоремы о пределах функций.
- •7. Непрерывные функции и их свойства.
- •9. Производная функции.
- •10.Геометрический смысл производной.
- •12.Производная сложной функции.
- •14.Логарифмическая производная.
- •16.Теорема Ролля.
- •17.Теорема Лагранжа.
- •18.Правило Лопиталя.
- •21.Экстремум функции.
- •22.Наибольшее и наименьшее значения функции на отрезке.
- •23.Формулы Тейлора и Маклорена.
- •24.Комплексные числа и действия с ними.
- •25.Разложение рациональной функции на простейшие дроби.
- •26.Неопределенный интеграл и его свойства.
- •27.Замена переменной в неопределенном интеграле.
- •28.Интегрирование по частям.
- •29.Интегрирование рациональных дробей.
- •30.Интегрирование иррациональных выражений.
- •31.Интегрирование тригонометрических функций.
22.Наибольшее и наименьшее значения функции на отрезке.
С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования... Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.
Следует
отметить, что наибольшее и наименьшее
значение функции обычно ищется на
некотором интервале X,
который является или всей областью
определения функции или частью области
определения. Сам интервал X
может быть отрезком
, открытым интервалом
,
(a;b],
[a;b)
, бесконечным
промежутком
В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y = f(x).
Кратко остановимся на основных определениях.
Наибольшим
значением функции y
= f(x)
на промежутке X
называют такое значение
, что
для любого
справедливо
неравенство
.
Наименьшим
значением функции y
= f(x)
на промежутке X
называют такое значение
, что
для любого
справедливо
неравенство
.
Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе x0 .
Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.
Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.
Сразу ответим на один из самых распространенных вопросов по этой теме:"Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.
Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.
На отрезке
На первом рисунке функция принимает наибольшее (max y) и наименьшее (min y) значения в стационарных точках, находящихся внутри отрезка [-6; 6].
Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на [1; 6]. В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее - в точке с абсциссой, соответствующей правой границе интервала.
На рисунке №3 граничные точки отрезка [-3; 2] являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.