
- •1.Определение функции и способы ее задания.
- •2.Приближенные числа и действия с ними.
- •3.Предел последовательности.
- •4.Теоремы о пределах последовательностей.
- •5.Предел функции.
- •6.Теоремы о пределах функций.
- •7. Непрерывные функции и их свойства.
- •9. Производная функции.
- •10.Геометрический смысл производной.
- •12.Производная сложной функции.
- •14.Логарифмическая производная.
- •16.Теорема Ролля.
- •17.Теорема Лагранжа.
- •18.Правило Лопиталя.
- •21.Экстремум функции.
- •22.Наибольшее и наименьшее значения функции на отрезке.
- •23.Формулы Тейлора и Маклорена.
- •24.Комплексные числа и действия с ними.
- •25.Разложение рациональной функции на простейшие дроби.
- •26.Неопределенный интеграл и его свойства.
- •27.Замена переменной в неопределенном интеграле.
- •28.Интегрирование по частям.
- •29.Интегрирование рациональных дробей.
- •30.Интегрирование иррациональных выражений.
- •31.Интегрирование тригонометрических функций.
5.Предел функции.
Число А называется пределом ф-ции f(x) при хx0, если для каждого, как угодно малого на период заданного числа . ->0, найдется такое как угодно малое на период заданного >0, что будут выполняться неравенства: Если 0<|x-x0|<, то |f(x)-A|< и х!=х0
Основные св-ва: 1.Если величина имеет предел, то только 1.
Док-во
{xn} имеет два разл. Предела a и b, а¹ b. Тогда согласно определению пределов любая из окрестностей т. а содержит все эл-ты посл-ти xn за исключением конечного числа и аналогичным св-вом обладает любая окрестность в точке b. Возьмем два радиуса e = (b-a)/2, т.к. эти окрестности не пересекаются, то одновременно они не могут содержать все эл-ты начиная с некоторого номера. Получим противоречие теор. док-на.
П р и м е р . Найти
Р е ш е н и е . Подставляя x = 3 в выражение
получим
не имеющее смысла
выражение
.
Поэтому решим по-другому:
Сокращение
дроби в данном случае корректно, так
как x
3
,он лишь приближается
к 3. Теперь мы имеем:
поскольку,
если x стремится к 3, то x + 3 стремится
к 6 .
6.Теоремы о пределах функций.
Теорема 1. (о предельном переходе в равенстве) Если две функции принимают одинаковые значения в окрестности некоторой точки, то их пределы в этой точке совпадают.
.
Теорема 2. (о предельном переходе в неравенстве) Если значения функции f(x) в окрестности некоторой точки не превосходят соответствующих значений функции g(x) , то предел функции f(x) в этой точке не превосходит предела функции g(x).
.
Теорема 3. Предел постоянной равен самой постоянной.
.
Доказательство.
f(x)=с,
докажем, что
.
Возьмем произвольное >0. В качестве можно взять любое
положительное
число. Тогда при
.
Теорема 4. Функция не может иметь двух различных пределов в
одной точке.
Доказательство. Предположим противное. Пусть
и
.
По теореме о связи предела и бесконечно малой функции:
f(x)-A=
- б.м. при
,
f(x)-B=
- б.м. при
.
Вычитая
эти равенства, получим:
B-A= - .
Переходя к пределам в обеих частях равенства при , имеем:
B-A=0, т.е. B=A. Получаем противоречие, доказывающее теорему.
Теорема 5. Если каждое слагаемое алгебраической суммы функций имеет предел при , то и алгебраическая сумма имеет предел при , причем предел алгебраической суммы равен алгебраической сумме пределов.
.
Доказательство.
Пусть
,
,
.
Тогда, по теореме о связи предела и б.м. функции:
где
- б.м. при
.
Сложим алгебраически эти равенства:
f(x)+g(x)-h(x)-(А+В-С)=
,
где
б.м.
при
.
По теореме о связи предела и б.м. функции:
А+В-С=
.
Теорема 6. Если каждый из сомножителей произведения конечного числа функций имеет предел при , то и произведение имеет предел при , причем предел произведения равен произведению пределов.
.
Следствие. Постоянный множитель можно выносить за знак предела.
.
Теорема 7. Если функции f(x) и g(x) имеют предел при ,
причем
,
то и их частное имеет предел при
,
причем предел частного равен частному
пределов.
,
.