Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпора по высшей математике.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
674.72 Кб
Скачать

27.Замена переменной в неопределенном интеграле.

При вычислении определенных интегралов с использованием формулы Ньютона-Лейбница предпочтительно жестко не разграничивать этапы решения задачи (нахождение первообразной подынтегральной функции, нахождение приращения первообразной). Такой подход, использующий, в частности, формулы замены переменной и интегрирования по частям для определенного интеграла, обычно позволяет упростить запись решения.

ТЕОРЕМА. Пусть функция φ(t) имеет непрерывную производную на отрезке [α,β], а=φ(α), в=φ(β) и функция f(х) непрерывна в каждой точке х вида х=φ(t), где t [α,β].

Тогда справедливо следующее равенство:

Эта формула носит название формулы замены переменной в определенном интеграле.

Подобно тому, как это было в случае неопределенного интеграла, использование замены переменной позволяет упростить интеграл, приблизив его к табличному (табличным). При этом в отличие от неопределенного интеграла в данном случае нет необходимости возвращаться к исходной переменной интегрирования. Достаточно лишь найти пределы интегрирования α и β по новой переменной t как решение относительно переменной t уравнений φ(t)=а и φ(t)=в. На практике, выполняя замену переменной, часто начинают с того, что указывают выражение t=ψ(х) новой переменной через старую. В этом случае нахождение пределов интегрирования по переменной t упрощается: α=ψ(а), β=ψ(в).

28.Интегрирование по частям.

Из дифференциального исчисления известно, что если u и v - дифференцируемые функции от x, то

d(uv)=udv+vdu

Отсюда

udv=d(uv)-vdu

Интегрируя обе части этого равенства, имеем

или

Интегрированием по частям называется интегрирование с помощью полученной формулы.

Основные случаи, когда применяется данный способ интегрирования:

1) подинтегральная функция содержит произведение многочлена от x на показательную функцию от x или произведение многочлена от x на sin(x) или cos(x), или произведение многочлена от x на ln(x);

2) подинтегральная функция представляет собой одну из обратных тригонометрических функций arcsin(x), arccjs(x) и т.д.;

3) подинтегральная функция есть произведение показательной функции на sin(x) или cos(x).

Пример: необходимо найти интеграл

Положим u = x, dv = sin(x)dx. Тогда du = dx, v = -cos(x). Отсюда

29.Интегрирование рациональных дробей.

Рациональной дробью называется дробь P(x)/Q(x), числитель P(x) и знаменатель Q(x) которой – многочлены. Рациональные дроби бывают неправильные, если степень многочлена в её числителе не меньше степени многочлена в знаменателе, и правильные, если степень многочлена в числителе меньше степени многочлена в знаменателе.

У любой неправильной дроби можно выделить её целую часть. Для этого следует по правилу деления многочленов разделить числитель на знаменатель. Поэтому любую неправильную дробь можно представить в виде суммы её целой части и некоторой правильной дроби.

Например, неправильную дробь

можно представить в виде

Таким образом, если необходимо проинтегрировать неправильную дробь, то, представив её в виде суммы многочлена и правильной дроби, с помощью метода разложения сведём решение к интегрированию правильной дроби.

Ограничимся интегрированием лишь правильных рациональных дробей, знаменателями которых являются многочлены первой и второй степени. В общем виде интегралы от таких дробей записываются следующим образом:

(18)

(19)

При интегрировании дробей можно использовать следующую формулу, получаемую с помощью метода замены переменной:

(20)