
- •Содержание
- •1. Общие принципы построения сетей 7
- •2. Аналоговые каналы передачи данных 14
- •3. Цифровые каналы передачи данных 19
- •Введение
- •1. Общие принципы построения сетей
- •1.1. Функциональные возможности сетей
- •1.2. Структурная организация компьютерной сети
- •1.2.1. Сети разного масштаба
- •1.2.2. Среды передачи данных
- •1.2.3. Режимы передачи данных
- •1.2.4. Способы коммутации
- •1.2.5. Виртуальные каналы
- •2. Аналоговые каналы передачи данных
- •2.1. Аналоговая модуляция
- •2.2. Модемы
- •2.3. Протоколы, поддерживаемые модемами
- •2.4. Режимы передачи
- •2.5. Асинхронная, синхронная, изохронная и плезиохронная передача
- •3. Цифровые каналы передачи данных
- •3.1. Частотное и временное разделение каналов
- •3.2. Проводные линии связи и их характеристики
- •3.2.1. Витая пара
- •3.2.2. Коаксиальный кабель
- •3.2.3. Волоконно-оптический кабель
- •3.3. Беспроводные среды передачи данных
- •3.3.1. Инфракрасные волны
- •3.3.2. Радиоволны, сигналы с узкополосным спектром
- •3.3.3. Радиоволны, широкополосные сигналы
- •3.3.4. Спутниковая связь
- •3.3.5. Сотовая связь
- •4. Передача данных и кодирование информации
- •4.1. Количество информация и энтропия
- •4.2. Свойства энтропии
- •4.3. Единицы количества информации
- •4.4. Кодирование информации
- •4.5. Логическое кодирование
- •4.6. Самосинхронизирующиеся коды
- •5. Контроль передачи информации и сжатие данных
- •5.1. Самовосстанавливающиеся коды
- •5.2. Систематические коды
- •5.3. Алгоритмы сжатия данных
- •5.3.1. Алгоритм rle
- •5.3.2. Алгоритм Лемпела-Зива
- •5.3.3. Кодирование Шеннона-Фано
- •5.3.4. Алгоритм Хаффмана
- •6. Сетевое программное обеспечение
- •6.1. Архитектура спо
- •6.2. Основные принципы взаимосвязи открытых систем
- •7. Модель взаимодействия открытых систем
- •7.1. Структура модели osi
- •7.2. Протоколы и интерфейсы
- •7.3. Уровни модели osi
- •7.3.1. Физический уровень
- •7.3.2. Канальный уровень
- •7.3.3. Сетевой уровень
- •7.3.4. Транспортный уровень
- •7.3.5. Сеансовый уровень
- •7.3.6. Уровень представления
- •7.3.7. Прикладной уровень
- •7.4. Назначение уровней модели osi
- •8. Основные характеристики локальных сетей
- •8.1. Сетевые топологии
- •8.1.1. Шина
- •8.1.2. Дерево
- •8.1.3. Звезда с пассивным центром
- •8.1.4. Звезда с интеллектуальным центром
- •8.1.5. Кольцо
- •8.1.6. Цепочка
- •8.1.7. Полносвязная топология
- •8.1.8. Произвольная (ячеистая) топология
- •8.2. Методы доступа и их классификация
- •8.2.1. Метод доступа с контролем несущей и определением коллизий
- •8.2.2. Маркерные методы доступа
- •9. Основные типы сетевых устройств
- •9.1. Сетевые адаптеры
- •9.2. Концентраторы
- •9.3. Мосты
- •9.4. Коммутаторы
- •9.5. Брандмауэры
- •10. Сети token ring и fddi
- •10.1. Технология Token Ring
- •10.1.1. Маркерный метод доступа
- •10.1.2. Система приоритетного доступа
- •10.1.3. Оборудование Token Ring
- •10.2. Технология fddi
- •11. Технология ethernet
- •11.1. Появление и сущность технологии Ethernet
- •11.2. Форматы кадров Ethernet
- •11.3. Высокоскоростные технологии локальных сетей
- •11.3.1. Технология Fast Ethernet 100Мбит/с
- •11.3.2. Технология Gigabit Ethernet 1000 Мбит/с
- •11.3.3. Технология 100vg-AnyLan
- •12. Требования к сетям
- •12.1. Производительность
- •12.2. Надежность и безопасность
- •12.3. Расширяемость и масштабируемость
- •12.4. Прозрачность
- •12.5. Поддержка разных видов трафика
- •12.6. Управляемость
- •12.7. Совместимость
- •12.8. Качество обслуживания
- •Список литературы
12.6. Управляемость
Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети. В идеале средства управления сетями представляют собой систему, осуществляющую наблюдение, контроль и управление каждым элементом сети — от простейших до самых сложных устройств, при этом такая система рассматривает сеть как единое целое, а не как разрозненный набор отдельных устройств.
Хорошая система управления наблюдает за сетью и, обнаружив проблему, активизирует определенное действие, исправляет ситуацию и уведомляет администратора о том, что произошло и какие шаги предприняты. Одновременно с этим система управления должна накапливать данные, на основании которых можно планировать развитие сети. Наконец, система управления должна быть независима от производителя, и обладать удобным интерфейсом, позволяющим выполнять все действия с одной консоли.
Решая тактические задачи, администраторы и технический персонал сталкиваются с ежедневными проблемами обеспечения работоспособности сети. Эти задачи требуют быстрого решения, обслуживающий сеть персонал должен оперативно реагировать па сообщения о неисправностях, поступающих от пользователей или автоматических средств управления сетью. Постепенно становятся заметны более общие проблемы производительности, конфигурирования сети, обработки сбоев и безопасности данных, требующие стратегического подхода, то есть планирования сети. Планирование, кроме этого, включает прогноз изменений требований пользователей к сети, вопросы применения новых приложений, новых сетевых технологий и т. п.
Полезность системы управления особенно ярко проявляется в больших сетях: корпоративных или публичных глобальных. Без системы управления в таких сетях нужно присутствие квалифицированных специалистов по эксплуатации в каждом здании каждого города, где установлено оборудование сети, что в итоге приводит к необходимости содержания огромного штата обслуживающего персонала.
В настоящее время в области систем управления сетями много нерешенных проблем. Явно недостаточно действительно удобных, компактных и многопротокольных средств управления сетью. Большинство существующих средств вовсе не управляют сетью, а всего лишь осуществляют наблюдение за ее работой. Они следят за сетью, но не выполняют активных действий, если с сетью что-то произошло или может произойти. Мало масштабируемых систем, способных обслуживать как сети масштаба отдела, так и сети масштаба предприятия, — очень многие системы управляют только отдельными элементами сети и не анализируют способность сети выполнять качественную передачу данных между конечны ми пользователями сети.
12.7. Совместимость
Совместимость, или интегрируемость, означает, что сеть способна включав а себя самое разнообразное программное и аппаратное обеспечение, то есть в ней могут сосуществовать различные операционные системы, поддерживающие разные стеки коммуникационных протоколов, а также аппаратные средства и приложения от разных производителей. Сеть, состоящая из разнотипных элементов, называется неоднородной, или гетерогенной, а если гетерогенная сеть работает без проблем, то она является интегрированной. Основной путь построения интегрированных сетей — использование модулей, выполненных в соответствии с открытыми стандартами и спецификациями.