Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Компьютерные сети. Часть 1..doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
1.24 Mб
Скачать

9. Основные типы сетевых устройств

9.1. Сетевые адаптеры

Сетевые адаптеры предназначены для сопряжения сетевых устройств со средой передачи в соответствии с принятыми правилами обмена информации. Сетевым устройством может быть компьютер пользователя, сетевой сервер, рабочая станция и т.д. Набор выполняемых сетевым адаптером функций зависит от конкретного сетевого протокола. Ввиду того, что сетевой адаптер в физическом, и в логическом смысле находится между устройством и сетевой средой, его функции можно разделить на функции сопряжения с сетевым устройством и функции обмена с сетью.

Сетевые функции могут перераспределяться между адаптером и компьютером. Чем больше функций выполняет компьютер, тем проще функциональная схема адаптера. К основным сетевым функциям адаптера относят:

  • Гальваническая развязка с коаксиальным кабелем или витой парой. Наиболее часто для этих целей применяют импульсные трансформаторы. В сети Ethernet (в связи с тем, что для определения конфликтной ситуации используется анализ постоянной составляющей) эта схема несколько усложнена. Иногда для развязки используются оптроны.

  • Кодирование и декодирование сигналов. Наиболее часто применяется самосинхронизирующийся манчестерский код;

  • Идентификация своего адреса в принимаемом пакете. Физический адрес адаптера может определяться установкой переключателей, храниться в специальном регистре или прошиваться в ППЗУ.

  • Преобразование параллельного кода в последовательный код при передаче и обратное преобразование при приеме. В простейшем случае для этих целей используются сдвиговые регистры с параллельным входом и последовательным выходом. Эта функция может быть реализована и программным способом.

  • Промежуточное хранение данных и служебной информации в буфере. Использование буфера позволяет возложить функции контроля за сетью на адаптер. При наличии буфера компьютер может не отслеживать момент передачи данных.

  • Выявление конфликтных ситуаций и контроль состояния сети. В наибольшей степени эта функция важна в сетях с топологией «шина» и со случайным методом доступа к среде передачи. Возможные конфликты адаптер должен разрешать самостоятельно.

  • Подсчет контрольной суммы. Наиболее распространенным способом определения контрольной суммы является вычисление при помощи сдвигового регистра через сумматор по модулю 2 с обратными связями от некоторых разрядов. Места включения обратных связей определяются выбранным полиномом.

  • Согласование скоростей пересылки данных компьютером в адаптер или из него со скоростью обмена по сети. При малой скорости обмена в сети компьютеру придется выжидать момент передачи. При большой скорости он может не успевать отправлять свои данные. Адаптер при помощи буфера справляется с этой задачей.

9.2. Концентраторы

Основная функция концентратора – повторение каждого полученного сигнала на всех (для Ethernet) или на некоторых портах. Соответственно, наиболее общее название для такого рода устройств – повторитель (repeater). Для 10BaseT Ethernet с топологией “звезда” традиционно используется термин “хаб” (hub). Все эти термины равноправны и взаимозаменяемы. Концентратор работает на физическом уровне модели OSI (поскольку имеет дело с электрическими сигналами, их уровнями, полярностями и т.д.) и на канальном уровне (повторители Ethernet, например, умеют распознавать коллизии), но не выполняет никакого анализа кадров.

К каждому порту концентратора подключаются либо конечные узлы, либо другие концентраторы или другие сетевые устройства, либо (например, в 10Base2 Ethernet) целые физические сегменты кабеля.

Концентратор используется, прежде всего, для увеличения диаметра сети и количества подключенных узлов. Основные технологии локальных сетей допускают использование несколько концентраторов в одной сети, но при некоторых условиях. Например, между любой парой узлов в сети Ethernet может быть не более четырех повторителей (соответственно, максимальный путь включает пять сегментов, причем узлы могут подключаться только к трем из них – так называемое правило “5-4-3”), задержка распространения сигнала между любой парой узлов не должна превышать 25 мкс.

Сеть, построенная на концентраторах, образует единый домен коллизий. Каждый пакет, выданный любой узлом, должен достичь всех остальных узлов, и в это время никакой другой узел не может передавать данные.

С увеличением количества узлов в сети растет частота коллизий, и полезная пропускная способность быстро уменьшается. Для технологий Ethernet приемлемой оказывается нагрузка в 40-50% от максимальной пропускной способности. То есть, пока общий объем передаваемых данных не превышает 40-50% от 10 Мбит/с (для Ethernet), сеть работает нормально, а при росте нагрузки полезная пропускная способность быстро падает. Приемлемое количество узлов в сети, если передаются не мультимедийные данные, лежит около 30.

Конструктивно концентраторы выпускаются в одном из трех вариантов: автономные (standalone), стековые, модульные, модульно-стековые.

Автономные и стековые концентраторы выполняются в виде отдельного корпуса с фиксированным количеством и типом портов (обычно до 24). Все порты, как правило, поддерживают одну среду передачи. Иногда выделяется порт для подключения к магистрали или каскадирования. Стековый концентратор, кроме того, имеет специальный порт для объединения нескольких таких концентраторов в единое устройство – стек концентраторов. Как правило, в стеке участвует до 8 концентраторов (иногда больше). Модульный концентратор состоит из общего шасси и подключаемых к нему модулей. Разные модули могут иметь разное количество портов и поддерживать разные типы физической среды. Как правило, подключение и отключение модуля не требует выключения концентратора. Обычно модульные концентраторы снабжаются дополнительным модулем SNMP-управления, резервными источниками питания и устройствами вентиляции. Модульно-стековые концентраторы представляют собой модульные концентраторы на небольшое количество модулей с дополнительным портом для соединения их в стек.

Концентраторы могут иметь несколько внутренних шин, образуя несколько разделяемых сегментов. Разные порты концентратора связываются (как правило, не аппаратно, а с помощью программного управления) с разными сегментами. Сами сегменты никак друг с другом не связываются. Такой концентратор называется многосегментным, его способность программно назначать принадлежность портов к сегментам называется конфигурационной коммутацией (configuration switching). Когда необходимо соединить эти сегменты, применяют мосты, коммутаторы или маршрутизаторы. Развитием многосегментных концентраторов стали коммутирующие концентраторы, имеющие внутренний мост, связывающий сегменты.

Для подключения к сети удаленных групп могут быть использованы концентраторы с дополнительным волоконно-оптическим портом. Существует три разновидности реализации такого порта: вставляемые в гнездо расширения slide-in – микротрансивер, встраиваемый в гнездо разъема AUI навесной микротрансивер и постоянный оптический порт. Оптические концентраторы применяются в качестве центрального устройства распределенной сети с большим количеством отдельных удаленных рабочих станций и небольших рабочих групп. Порты такого концентратора выполняют функции усилителей и осуществляют полную регенерацию пакетов. Существуют концентраторы с фиксированным количеством подключаемых сегментов, но некоторые типы концентраторов имеют модульную конструкцию, что позволяет гибко подстраиваться к существующим условиям. Чаще всего концентраторы и репитеры представляют собой автономные блоки, с отдельным питанием.