
- •Курс лекцій
- •6.090803 «Електронні системи»,
- •6.090802 «Електронні прилади і пристрої»,
- •6.090804 «Фізична і біомедична електроніка»
- •Курс лекцій
- •6.090803 «Електронні системи»,
- •6.090802 «Електронні прилади і пристрої»,
- •6.090804 «Фізична і біомедична електроніка»
- •Передмова
- •Елементи фізики напівпровідників та електронно- діркових переходів
- •1.1 Загальні відомості про напівпровідники
- •1.1.1 Власна електропровідність напівпровідників
- •1.1.2 Домішкова провідність напівпровідників
- •1.1.3 Діркова провідність напівпровідників
- •1.1.4 Види струмів у напівпровідниках
- •Лекція 2 електронно-дірковий перехід
- •2.1 Електронно-дірковий перехід та фізичні процеси в ньому
- •3.1.2 Ємності переходу
- •3.1.3 Реальна вах р-n-переходу
- •3.1.5 Різновиди електричних переходів та контактів
- •Лекція 4 напівпровідникові діоди
- •4.1 Класифікація та система позначень діодів
- •4.1.1 Випрямлювальні діоди
- •Параметри випрямлювальних діодів
- •4.1.2 Напівпровідникові стабілітрони
- •5.1.2 Імпульсні діоди та перехідні процеси в них
- •5.1.3 Тунельні та обернені діоди
- •5.1.4 Варикапи
- •6.1.2 Способи вмикання й режими роботи біполярних транзисторів
- •6.1.3 Принцип дії біполярного транзистора в активному режимі
- •6.1.5 Схема вмикання транзистора зі спільним емітером та спільним колектором
- •Лекція 7 характеристики біполярних транзисторів
- •7.1 Статичні характеристики і параметри біполярних транзисторів
- •7.1.1 Статичні характеристики біполярного транзистора у схемі зі спільною базою
- •7.1.2 Статичні характеристики біполярного транзистора у схемі зі спільним емітером
- •7.1.3 Статичні характеристики біполярного транзистора у схемі зі спільним колектором
- •Лекція 8 параметри біполярних транзисторів
- •8.1 Граничні режими транзистора. Робочий діапазон температур
- •8.1.1 Пробої транзистора
- •8.1.2 Максимально допустима потужність, що розсіюється колектором
- •8.2 Диференційні параметри біполярного транзистора
- •8.2.1 Оцінка властивостей транзистора
- •8.2.2 Фізичні параметри та еквівалентні схеми біполярних транзисторів
- •9.1.2 Схема зі спільним емітером
- •9.2 Способи забезпечення режиму спокою транзисторного каскаду
- •9.2.1 Схема з фіксованим струмом бази
- •9.2.2 Схема з фіксованим потенціалом бази
- •9.2.3 Схема з температурною стабілізацією в емітерному колі.
- •9.2.4 Схема каскаду зі спільною базою та автоматичним зміщенням робочої точки
- •9.3 Динамічні характеристики біполярного транзистора та їх використання
- •9.3.1 Параметри режиму підсилення та їх розрахунок за динамічними характеристиками транзисторного каскаду
- •Лекція 10 деякі різновиди біполярних транзисторів
- •10.1 Частотні властивості біполярних транзисторів
- •10.1.1 Вплив ємностей переходів і розподільного опору бази на частотні властивості транзистора
- •10.2 Робота біполярного транзистора у ключовому режимі
- •10.3 Одноперехідний транзистор
- •10.4 Високочастотні малопотужні транзистори
- •10.5 Потужні транзистори
- •Лекція 11 польові транзистори
- •11.1 Польові транзистори з керувальними p-n-переходами
- •11.1.1 Статичні вхідні характеристики
- •11.1.2 Статичні прохідні (стокозатворні) характеристики
- •11.1.3 Статичні вихідні (стокові) характеристики
- •11.1.4 Диференційні параметри польових транзисторів
- •11.2 Польові транзистори з ізольованим затвором (мдн - транзистори)
- •11.2.1 Ефект поля.
- •11.3 Залежність характеристик і параметрів польових транзисторів від температури
- •Лекція 12 динамічний режим роботи польових транзисторів
- •12.1 Підсилювальні каскади на польовому транзисторі
- •12.2 Частотні властивості польових транзисторів
- •12.3 Потужні польові транзистори
- •12.3.1 Потужні мдн - транзистори
- •12.3.3 Транзистори з статичною індукцією
- •Лекція 13 тиристори
- •13.1 Будова, принцип дії та режими роботи тиристора
- •13.1.2 Диністорний режим
- •13.1.3 Триністорний режим
- •13.1.4 Симістори
- •13.2 Способи комутації тиристорів
- •13.2.2 Вимкнення тиристорів
- •Лекція 14 оптоелектронні напівпровідникові прилади
- •14.1 Загальні відомості
- •14.2 Випромінюючі діоди
- •14.3 Напівпровідникові фотоприймачі
- •14.3.1 Фоторезистори
- •14.3.2 Фотодіоди
- •14.3.3 Фотоприймачі з внутрішнім підсиленням
- •14.4 Оптрони та їх застосування
- •Список скорочень
- •Список літератури
- •10.2 Робота біполярного транзистора у ключовому режимі 128
- •12.1 Підсилювальні каскади на польовому транзисторі 160
- •6.090803 «Електронні системи»,
- •6.090804 «Фізична і біомедична електроніка»
- •Курс лекцій
- •6.090803 «Електронні системи»,
- •6.090802 «Електронні прилади і пристрої»,
- •6.090804 «Фізична і біомедична електроніка»
14.3.3 Фотоприймачі з внутрішнім підсиленням
До таких фотоприймачів належать фоторезистори та фототиристори.
Крім перетворення світлової енергії в електричну з утворенням фотоструму, як у фотодіодах, фототранзистор ще й підсилює цей фотострум.
Розглянемо роботу фототранзистора у ССЕ в режимі з вимкненою базою ( = 0) (рисунок 14.12).
Рисунок 14.12 – Структура і схема ввімкнення фототранзистора (а), статичні вихідні характеристики (б)
Якщо =0, то через фототранзистор проходить невиликий темновий струм
=
(
+1).
(14.4)
При освітленні області бази через вікно ( >0) в ній генеруються нерівноважні пари носіїв заряду – фотоелектрони та фотодірки, які дифундують до ЕП та КП. При цьому поле КП розділяє заряди: електрони рухаються до n - колектора, дірки – до p- бази. У колі колектора під дією цих електронів зростає струм на величину . Дірки створюють у базі позитивний заряд, який зміщує ЕП у прямому напрямі і спричиняє інжекцію електронів. Унаслідок інжекції електронів через ЕП, їх дифузії через базу та екстракції через КП струм колектора додатково зростає на величину . Тобто фотодірки у базі відіграють роль вхідного струму бази.
Загальний колекторний струм фототранзистора
= + + = (1+ ) + . (14.5)
Сім’я
ВАХ фототранзистора
=
подана на рисунку 14.12, б. Збільшення
освітлення фототранзистора приводить,
згідно з формулою (14.5), до зростання
колекторного струму. Інтегральна
чутливість фототранзистора
в (1+
)
разів більша, ніж у фотодіода. Це
пояснюється тим, що у фототранзистора
струм
підсилюється в (1+
)
разів.
Фототиристори (рисунок 14.13) є фотоприймачами з ключовою пороговою характеристикою і застосовуються для перемикання значних струмів і напруг, ВАХ з відкриваючою дією світлового потоку показана на рисунку 14.13, б.
а) б)
Рисунок 14.13 – Структура, схема вмикання (а) та ВАХ (б) фототиристора
Засвічення базової області тиристора зумовлює генерацію надлишкових носіїв заряду, що приводить до перемикання чотиришарової структури із закритого стану у відкритий так само, як це буває у триністорі при перемиканні керувальним струмом.
14.4 Оптрони та їх застосування
Оптрон, або оптопара, - це оптоелектронний прилад, що містить у собі конструктивно об’єднані й розміщені в одному корпусі джерело і приймач випромінювання з певним видом оптичного й електричного зв’язку між ними.
В електронних схемах оптрон виконує функцію елемента зв’язку, в одній з ланок якого інформація передається оптичним шляхом. Якщо між компонентами оптрона створити електричний зворотний зв’язок, то оптрон стає активним приладом, придатним для підсилення і генерування електричних і оптичних сигналів.
Приклад будови резисторного оптрона показано на рис. 14.14.
Рисунок 14.14 – Будова резисторного оптрона: 1 – світлодіод;
2 – металевий корпус; 3 – фоторезистор;
4 – електростатичний екран
Як джерело світла в ньому використовується світлодіод 1, як фотоприймач – фоторезистор 3 у вигляді спресованої таблетки. Для зменшення ємнісного зв’язку між джерелом світла та фотоприймачем розміщується прозорий електростатичний екран 4. Внутрішня частина оптрона заливається оргсклом або епоксидною смолою, які захищають прилад від впливу зовнішнього середовища і відіграють роль світловода. Герметичний металевий корпус 2 зовні нагадує корпус простого транзистора.
Джерело і приймач світла в оптроні мають бути спектрально узгоджені між собою. В оптичному видимому діапазоні застосовуються світлодіоди на основі SiC або GaP і фоторезистори на основі селеніду кадмію (CdSe) або сульфіду кадмію (CdS).
Проте оптичне середовище в оптроні може створюватися не лише з прозорого компаунда на основі полімерів. Для одержання високої розв’язки виходу і входу використовують волоконні світловоди у вигляді нитки з прозорого діелектрика. Світловий промінь від джерела випромінювання потрапляє в торець світловоду, і після багаторазового відбиття від бічних стінок він виходить з іншого кінця світловоду, зазнавши малого затухання. За допомогою волоконного світловоду можлива передача сигналу керування на великі відстані з високою електричною розв’язкою і перешкодостійкістю.
Схема вмикання діодного оптрона зображена на рис. 14.15.
Принцип дії оптрона полягає в тому, що під дією вхідного сигналу (сигналу керування) змінюється інтенсивність світлового потоку від випромінювача, і це приводить до зміни внутрішнього опору фотоприймача (фотодіода), струму у вихідному колі й напруги, що знімається з навантаження .
Рисунок 14.15 – Схема вмикання діодного оптрона
До основних параметрів оптрона належать:
-коефіцієнт
передачі
=
/
швидкодія;
-опір
розв’язки
Ом; -ємність розв’язки
Ф.
Переваги оптронів:
-можливість керувати високими напругами за допомогою низьких напруг, завдяки високій електричній ізоляції ( Ом).
-широка смуга пропускання (від постійної складової до гігагерців).
-фізична й конструктивна різноманітність; широта функціональних можливостей.
Оптронам властиві й деякі недоліки. До них належать висока споживана потужність, сильна температурна залежність характеристик, складність виготовлення, високий рівень власних шумів.
Залежно від виду фотоприймача розрізняють (рисунок 14.16) діодні, резисторні, транзисторні, тиристорні оптрони.
Рисунок 14.16 – Схемні позначення різновидів оптронів: а – діодний;
б – резисторний; в – транзисторний; г – тиристорний
Швидкий розвиток оптоелектроніки уможливив у багатьох випадках заміну елементів електронних схем оптронами. Деякі приклади такої заміни наведені у табл. 14.1.
Таблиця 14.1
№ |
Електрорадіокомпонент |
Оптронний аналог |
1 |
2 |
3 |
1 |
Імпульсний трансформатор
|
|
2 |
Перемикач
|
|
3
4
4 |
Змінний резистор
Потенціометр
|
3
|
5 |
Змінний конденсатор
|
|