Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курсовик по инерпретации1.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
3.84 Mб
Скачать
    1. Исследование корреляционной и ковариационной зависимости значений локального ∆g и аномального ∆g от глубины залегания кровли рифейского фундамента

По имеющимся приложениям снимаем данные значения локального ∆g и аномального ∆g для каждого пикета и значения глубины залегания рифейского фундамента для аналогичных точек на профиле. Полученные числовые значения вводятся в электронную таблицу Microsoft Excel и обрабатываются при помощи специальных функций для расчета ковариационной и корреляционной связей.

Результаты корреляционной и ковариационной обработки значений ∆gа:

32

0

-5650

33

1

-5600

34

2,5

 

35

2,5

 

36

2

 

37

0

 

38

-1,7

 

39

-2

 

40

-3,2

 

41

-3,8

 

42

-4,4

 

43

-4,8

 

44

-5

 

45

-5,4

 

46

-6

 

47

-6

 

48

-6,4

 

49

-7,6

 

50

-9

 

51

-10

 

52

-10,8

 

53

-10

-7000

54

-9

-6800

55

-7

-6450

56

-5,5

-6250

57

-4,4

-6000

58

-3,8

-6000

59

-3,8

-6000

60

-3,9

-6100

61

-4

-6200

62

-4,5

-6200

63

-4,7

-6300

64

-4,8

-6350

65

-5

-6400

66

-5

-6400

67

-5,2

-6400

68

-5

-6300

69

-4,9

-6250

70

-4,6

-6000

71

-4,5

-5700

72

-4,6

-5650

73

-2

-5550

74

4

-3650

75

8

-3700

76

6,4

-4250

77

3,2

-5750

78

-1,2

-5850

79

-4,4

-6300

80

-5

-6000

81

-4

-6200

82

-2,2

-6300

83

-1,7

-6400

84

-0,7

-6500

85

-0,2

-5200

86

0

-5250

87

-0,3

-5350

88

-0,6

-5600

89

-1

-5750

90

-2,6

-5950

91

-3

-5850

92

-2,6

-5600

93

0

-4800

94

2,4

-4700

95

4

-4300

96

4,9

-4000

97

5,8

-3800

98

6,6

-3800

99

8

-3700

100

8,8

-3500

101

9,7

-32500

102

10

-3100

103

10,6

-3000

104

10,9

-3000

105

11,7

-3000

106

11,8

-3000

107

12

-3000

108

12

-3000

109

12

-3000

110

11,7

-3200

111

10

-3500

112

8,4

-3750

113

7,5

-4000

Диаграмма 1. Общая зависимость ∆gа от глубины залегания кровли рифейского фундамента:

0,349248

корреляция

8116,283

ковариация

Значения корреляции и ковариации не являются нормой, поэтому разбиваем на участки.

Диаграмма 2. Зависимость ∆ga от глубины залегания рифея на участке 1-20 ПК:

0,835167

корреляция

1934,9

ковариация


Диаграмма 2. Зависимость ∆ga от глубины залегания рифея на участке 21-40 ПК:

0,927704

корреляция

390,2722

ковариация


Диаграмма 3. Зависимость ∆ga от глубины залегания рифея на участке 41-60 ПК:

0,9909

корреляция

838,75

ковариация

Диаграмма 4. Зависимость ∆ga от глубины залегания рифея на участке 61-80 ПК:

0,897505

корреляция

3107,35

ковариация

Диаграмма 5. Зависимость ∆ga от глубины залегания рифея на участке 81-100 ПК:

0,935188

корреляция

3428,95

ковариация


Диаграмма 6. Зависимость ∆ga от глубины залегания рифея на участке 101-113 ПК:

0,228449

корреляция

2513,284

ковариация

Вывод: на участке 81-100 ПК оптимальный коэффициент корреляции. Считаем его эталонным.

Результаты корреляционной и ковариационной обработки значений ∆g лок.:

ПК

∆gлок

кровля R

0

19

-2700

1

10

-2650

2

3

-2550

3

-2

-2550

4

-5

-2450

5

-5

-2400

6

-4

-2400

7

0

-2400

8

9

-2400

9

17

-2400

10

20

-2550

11

20

-2600

12

20

-2650

13

14

-2750

14

5

-3000

15

0

-3100

16

-4

-3450

17

-8

-3650

18

-10

-4000

19

10

-4150

20

10

-4550

21

-8

-4650

22

-5

-4670

23

-3

-4750


24

-4

-4850

25

-9

-5100

26

-10

-5300

27

-10

-5350

28

-12

-5500

29

-13

-5600

30

-13

-5600

31

-5

-5650

32

13

-5600

33

28

 

34

30

 

35

25

 

36

4

 

37

0

 

38

-10

 

39

-12

 

40

-12

 

41

-8

 

42

-7

 

43

3

 

44

7

 

45

2

 

46

-6

 

47

-12

 

48

-23

 

49

-33

 

50

-40

 

51

-35

-7000

52

-20

-6800

53

-10

-6450

54

2

-6250

55

13

-6000

56

26

-6000

57

30

-6000

58

33

-6100

59

32

-6200

60

30

-6200

61

23

-6300

62

18

-6350

63

10

-6400

64

0

-6400

65

-20

-6400

66

-40

-6300

67

-52

-6250

68

-60

-6000

69

-62

-5700

70

-60

-5650

71

-42

-5550

72

70

-3650

73

77

-3700

74

51

-4250

75

10

-5750

76

-35

-5850

77

-60

-6300

78

-63

-6000

79

-69

-6200

80

-64

-6300

81

-30

-6400

82

0

-6500

83

28

-5200

84

30

-5250

85

24

-5350


86

15

-5600

87

-7

-5750

88

-20

-5950

89

-28

-5850

90

-28

-5600

91

-15

-4800

92

-2

-4700

93

8

-4300

94

11

-4000

95

14

-3800

96

15

-3800

97

15

-3700

98

12

-3500

99

10

-32500

100

4

-3100

101

0

-3000

102

4

-3000

103

8

-3000

104

20

-3000

105

30

-3000

106

28

-3000

107

22

-3000

108

16

-3200

109

13

-3500

110

-12

-3750

111

-23

-4000

Диаграмма 1. Общая зависимость ∆gлок от глубины залегания кровли рифея:

0,142266

корреляция

12415,79

ковариация

Так общий коэффициент корреляции не является оптимальным, разбиваем разрез на участки.

Диаграмма 2. Зависимость ∆gлок от глубины залегания кровли рифея 0-20 ПК:

0,191932

корреляция

1202,381

ковариация



Диаграмма 3. Зависимость ∆gлок от глубины залегания кровли рифея 21-40 ПК:

0,045543

корреляция

116,8056

ковариация

Диаграмма 4. Зависимость ∆gлок от глубины залегания кровли рифея 41-60 ПК:

0,899563

корреляция

6960

ковариация

Диаграмма 5. Зависимость ∆gлок от глубины залегания кровли рифея 61-80 ПК:

0,666952

корреляция

26144

ковариация

Диаграмма 6. Зависимости ∆gлок от глубины залегания кровли рифея 81-111 ПК:

0,057449

корреляция

5175,078

ковариация

Вывод: наиболее подходящий коэффициент корреляции наблюдается на участке 41-60 ПК. Данный участок считаем эталонным.

7.3 Решение обратных задач гравиразведки по кривой ∆gлок.

Для решения обратных задач были выбраны участки кривой ∆gлок с аномальными значениями поля силы тяжести и проведены расчеты, для подтверждения аномалий поля с геологическим строением выбранных участков. Так расчет производился по участкам кривых, соответствующим Чиньяворикскому максимуму и Большепорожскомуму максимуму по кривой ∆gа и Вымскому горсту Синдорскому валу в геологическом разрезе.

Решение обратной задачи по Вымскому горсту:

h

в= |= |= 6,7 см

∆σ =

Решение обратной задачи по Синдорскому валу:

М=

V= =3,25 (

R=

Выводы: при решении обратных задач гравиразведки для Вымского горста и Синдорского вала были получены размеры, форма и глубина залегания тел, вызывающих аномалии в поле ∆g . Полученные данные были соотнесены с имеющимся геологическим разрезом и полностью подтвердили влияние на изменение поля силы тяжести выше описанных геологических объектов.