
- •1. Основные определения теории автоматического управления
- •3. Системы стабилизации, системы программного управления, следящие системы.
- •Знак означает, что управляемая величина поддерживается на заданном уровне с некоторой ошибкой.
- •5. Преобразование Лапласа. Основные свойства преобразования Лапласа
- •4. Дифференциальные уравнения сау. Уравнения статики. Линеаризация уравнений. Стандартная форма записи линейных дифференциальных уравнений.
- •6. Передаточные функции звеньев сау, их связь с дифференциальными уравнениями
- •9. Вещественная и мнимая частотные характеристики сау, их связь с амплитудной и фазовой частотными характеристиками.
- •8. Математическое описание сау в частотной области. Амплитудная и фазовая частотные характеристики сау
- •10. Логарифмические частотные характеристики сау
- •11. Типовые звенья сау
- •12. Интегрирующие и апериодические звенья, их частотные и переходные характеристики
- •13. Дифференцирующие и форсирующие звенья, их частотные и переходные характеристики
- •12. Интегрирующие и апериодические звенья, их частотные и переходные характеристики
- •13. Дифференцирующие и форсирующие звенья, их частотные и переходные характеристики
- •14. Колебательные и консервативные звенья, их частотные и переходные характеристики
- •15) Звено запаздывания, его частотные и переходные характеристики
- •16. Уравнения состояния.
- •17. Основные виды соединений звеньев сау, их передаточные функции, частотные характеристики
- •18. Передаточные функции типовой одноконтурной сау
- •19. Построение частотных характеристик системы по частотным характеристикам звеньев
- •20. Правила построения лах и лфх последовательно соединенных звеньев
- •21. Правила структурных преобразований многоконтурных сау.
- •22. Понятие об устойчивости линейных сау. Необходимое и достаточное условие устойчивости.
- •23. Критерий устойчивости Рауса-Гурвица
- •25. Критерий устойчивости Найквиста. Запасы устойчивости по амплитуде и фазе.
- •26. Логарифмический частотный критерий устойчивости. Определение по лчх запасов устойчивости по амплитуде и фазе.
- •27. Метод д-разбиения построения границ областей устойчивости.
- •28. Оценка качества сау по кривой переходного процесса.
- •29. Оценка качества сау на установившихся режимах. Коэффициенты ошибок. Статические и астатические системы.
- •30. Интегральные оценки качества переходных процессов.
- •31. Способы включения корректирующих устройств.
- •32. Виды обратных связей. Охватывание типовых звеньев жесткой, гибкой и изодромной обратными связями.
- •33. Синтез параметров сау по минимуму интегральной оценки.
- •34. Синтез линейных систем по логарифмическим амплитудно-частотным характеристикам.
- •35. Основные понятия и определения по нелинейным системам.
- •38. Основные виды фазовых траекторий линейных систем второго порядка.
- •39. Основные понятия по Ляпунову об устойчивости нелинейных систем. Основные виды устойчивости нелинейных систем.
- •40. Принципы построения и классификация адаптивных систем.
- •37. Основные методы исследования нелинейных сау. Метод фазовой плоскости.
- •41. Основные виды самонастраивающихся систем. Поисковые и беспоисковые системы.
- •43. Оценка качества переходных процессов по вещественной частотной характеристике замкнутой сау.
- •44. Особенности статистических характеристик соединений нелинейных звеньев.
- •1. Последовательное соединение нелинейных звеньев.
- •2. Параллельное соединение нелинейных звеньев.
- •42. Корневой метод оценки качества управления
- •Диаграмма Вышнеградского
- •45. Прямой метод Ляпунова.
- •46. Методы повышения точности сау.
- •7. Переходная и импульсная переходная характеритстики системы, их связь с передаточной функцией.
10. Логарифмические частотные характеристики сау
При практических расчетах САУ (без применения электронных вычислительных машин) удобно использовать частотные характеристики, построенные в логарифмической системе координат. Такие характеристики называют логарифмическими. Они имеют меньшую кривизну и поэтому могут быть приближенно заменены ломаными линиями, составленными из нескольких прямолинейных отрезков. Причем, эти отрезки в большинстве случаев удается построить без громоздких вычислений при помощи некоторых простых правил. Кроме того, в логарифмической системе координат легко находить характеристики различных соединений элементов, так как умножению и делению обычных характеристик соответствует сложение и вычитание ординат логарифмических характеристик.
За единицу длины по оси частот логарифмических характеристик принимают декаду.
Декада – интервал частот, заключенный между произвольным значением частоты i и его десятикратным значением 10i .
Отрезок логарифмической оси частот, соответствующий одной декаде, равен 1.
Обычно в расчетах используют логарифмическую амплитудную частотную характеристику (ЛАЧХ)
L() = 20 lg A( ), (2.41)
ординаты которой измеряют в логарифмических единицах – беллах (Б) или децибеллах (дБ).
Белл – единица измерения мощностей двух сигналов.
11. Типовые звенья сау
Алгоритмические звенья, которые описываются обыкновенными дифференциальными уравнениями первого и второго порядка, получили название типовых динамических звеньев.
Типовые динамические звенья являются основными составными частями алгоритмических схем непрерывных САУ, поэтому знание их характеристик существенно облегчает анализ таких систем.
Классификацию типовых динамических звеньев удобно осуществить, рассматривая различные частные формы дифференциального уравнения
.
(3.1) Безинерционное (пропорциональное)
-
Инерционное 1-го порядка (апериодическое)
-
Инерционное 2-го порядка (апериодическое)
-
T1 2T2
Инерционное 2-го порядка (колебательное)
--
T1 2T2
Идеальное интегрирующее
-
Идеальное дифференцирующее
-
Реальное дифференцирующее
-
Звено запаздывания
-
Типовые звенья ТАУ
1. К - Усилительное звено.
2. p - Дифференцирующее звено.
3. 1/p - Интегрирующее звено (интегратор).
4. K/(Tp+1) - Инерционное (апериодическое) звено.
5. K/(T2p+2dTp+1) - Колебательное звено.
6. K(Tp+1) - Форсирующее звено.
7. K(T2p+2dTp+1) - Форсирующее звено 2-го порядка.
12. Интегрирующие и апериодические звенья, их частотные и переходные характеристики
Интегрирующее звено. Интегрирующим называют звено, которое описывается уравнением
,или
передаточной функцией
. Уравнение
такого звена может быть записано также
в виде
.
Частотные функции этого звена имеют вид
;
;
;
;
;
.
Временные функции этого звена имеют вид
;
.
Апериодическое звено. Апериодическим (инерционным) звеном первого порядка называют звено, которое описывается уравнением
,
или передаточной функцией
.
Частотные функции этого звена имеют вид
;
;
;
;
;
.
Временные функции этого звена имеют вид
;
.
Апериодическое
звено второго порядка (
).
Передаточную функцию звена второго
порядка при
можно преобразовать к виду
,
где
.
Апериодическое звено второго порядка можно представить как последовательное соединение двух апериодических звеньев первого порядка. Оно не относится к числу элементарных звеньев.