Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
TAU_злата_AP.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
2.47 Mб
Скачать

42. Корневой метод оценки качества управления

Корневые методы для определения косвенной оценки показателя качества используют корни характеристического уравнения замкнутой системы и их расположения на комплексной плоскости.

Передаточная функция любой системы может быть представлена в следующем виде:

где i – это нули передаточной функции; i – полюса передаточной функции (корни характеристического уравнения).

i определяет устойчивость системы и качество переходных процессов, i определяет только качество переходных процессов.

Диаграмма Вышнеградского

Влияние распределения корней на характер переходного процесса и на устой­чивость хорошо иллюстрирует диаграмма, построенная И.А. Вышнеградским для нормированного характеристиче­ского уравнения третьего порядка .

О

бласть устойчивости в плоскости параметров А1 и А2 состоит из трех областей, соответствующих различному распределению корней. Область I, ограниченная линией abc, соответствует трем действительным (и не равным друг другу) корням и апериодическому переходному процессу. Область II, ограниченная линией abd, соответствует паре комплексных корней и одному действительному корню, причем действительный корень ближе к мнимой оси, чем комплексные. Переходный процесс в этом случае монотонный. В области III, заключенной между границей устойчивости и линией abc, также пара комплексных корней и один действительный, но к мнимой оси ближе расположены комплексные корни. Переходный процесс колебательный.

На диаграмме показано также распределение корней для разграничительных линий. В точке b, в которой А12=3, все три корня действительные и равные друг другу.

Частотные методы базируются на прямом и обратном преобразовании Фурье.

Если f(t) – функция периодическая, то для нее применимо:

Будем рассматривать:

Y(t)=h(t); x(t)=1(t)

, - вещественная характеристика.

______________________________________

Каждому полюсу i на комплексной плоскости соответствует определенная точка. Данные корни определяют на плоскости следующую замкнутую плоскость.

В

корневых методах используют так называемые корневые показатели, определяемые по расположению корней

р1, р2, …, рп характеристического уравнения замкнутой системы на комплексной плоскости.

  1. Наиболее общим корневым показателем качества является среднее геометрическое значение модулей корней

,

которое легко вычисляется через крайние коэффициенты характеристического уравнения . 0 определяет центр расположения всех корней характеристического уравнения и влияет на быстродействие системы. Чем меньше показатель 0, тем ближе «созвездие» корней к мнимой оси и тем больше длительность переходного процесса.

Пусть : Чем ближе к мнимой оси, тем ближе САУ к границе устойчивости. Поскольку - где - передаточный коэффициент разомкнутого контура для астатических систем, а - для статических систем. Чем выше коэффициент усиления k, тем лучше быстродействие системы.

2) Расстояние от мнимой оси до действительной части ближайшего к ней корня называется степенью устойчивости .

3) Колебательные свойства системы регулирования предопределяет k–ая пара комплексных корней , для которой наибольшее отношение

или наибольший угол между действительной осью и лучами, соединяющими начало координат с этими корнями. В данном случае такой парой являются комплексные корни р2 и р3.

Отношение д мнимой части к действительной части доминирующей пары комплексных корней называют степенью колебательности.

В практических расчетах чаще используют корневой показатель колебательности

,

также определяемый через доминирующую пару комплексных корней. При выборе настроек регуляторов стремятся получить значения .

4) Абсолютное значение действительной части корня, наиболее удаленного от мнимой оси.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]