
- •1. Основные определения теории автоматического управления
- •3. Системы стабилизации, системы программного управления, следящие системы.
- •Знак означает, что управляемая величина поддерживается на заданном уровне с некоторой ошибкой.
- •5. Преобразование Лапласа. Основные свойства преобразования Лапласа
- •4. Дифференциальные уравнения сау. Уравнения статики. Линеаризация уравнений. Стандартная форма записи линейных дифференциальных уравнений.
- •6. Передаточные функции звеньев сау, их связь с дифференциальными уравнениями
- •9. Вещественная и мнимая частотные характеристики сау, их связь с амплитудной и фазовой частотными характеристиками.
- •8. Математическое описание сау в частотной области. Амплитудная и фазовая частотные характеристики сау
- •10. Логарифмические частотные характеристики сау
- •11. Типовые звенья сау
- •12. Интегрирующие и апериодические звенья, их частотные и переходные характеристики
- •13. Дифференцирующие и форсирующие звенья, их частотные и переходные характеристики
- •12. Интегрирующие и апериодические звенья, их частотные и переходные характеристики
- •13. Дифференцирующие и форсирующие звенья, их частотные и переходные характеристики
- •14. Колебательные и консервативные звенья, их частотные и переходные характеристики
- •15) Звено запаздывания, его частотные и переходные характеристики
- •16. Уравнения состояния.
- •17. Основные виды соединений звеньев сау, их передаточные функции, частотные характеристики
- •18. Передаточные функции типовой одноконтурной сау
- •19. Построение частотных характеристик системы по частотным характеристикам звеньев
- •20. Правила построения лах и лфх последовательно соединенных звеньев
- •21. Правила структурных преобразований многоконтурных сау.
- •22. Понятие об устойчивости линейных сау. Необходимое и достаточное условие устойчивости.
- •23. Критерий устойчивости Рауса-Гурвица
- •25. Критерий устойчивости Найквиста. Запасы устойчивости по амплитуде и фазе.
- •26. Логарифмический частотный критерий устойчивости. Определение по лчх запасов устойчивости по амплитуде и фазе.
- •27. Метод д-разбиения построения границ областей устойчивости.
- •28. Оценка качества сау по кривой переходного процесса.
- •29. Оценка качества сау на установившихся режимах. Коэффициенты ошибок. Статические и астатические системы.
- •30. Интегральные оценки качества переходных процессов.
- •31. Способы включения корректирующих устройств.
- •32. Виды обратных связей. Охватывание типовых звеньев жесткой, гибкой и изодромной обратными связями.
- •33. Синтез параметров сау по минимуму интегральной оценки.
- •34. Синтез линейных систем по логарифмическим амплитудно-частотным характеристикам.
- •35. Основные понятия и определения по нелинейным системам.
- •38. Основные виды фазовых траекторий линейных систем второго порядка.
- •39. Основные понятия по Ляпунову об устойчивости нелинейных систем. Основные виды устойчивости нелинейных систем.
- •40. Принципы построения и классификация адаптивных систем.
- •37. Основные методы исследования нелинейных сау. Метод фазовой плоскости.
- •41. Основные виды самонастраивающихся систем. Поисковые и беспоисковые системы.
- •43. Оценка качества переходных процессов по вещественной частотной характеристике замкнутой сау.
- •44. Особенности статистических характеристик соединений нелинейных звеньев.
- •1. Последовательное соединение нелинейных звеньев.
- •2. Параллельное соединение нелинейных звеньев.
- •42. Корневой метод оценки качества управления
- •Диаграмма Вышнеградского
- •45. Прямой метод Ляпунова.
- •46. Методы повышения точности сау.
- •7. Переходная и импульсная переходная характеритстики системы, их связь с передаточной функцией.
42. Корневой метод оценки качества управления
Корневые методы для определения косвенной оценки показателя качества используют корни характеристического уравнения замкнутой системы и их расположения на комплексной плоскости.
Передаточная функция любой системы может быть представлена в следующем виде:
где
i
– это нули передаточной функции; i
– полюса передаточной функции (корни
характеристического уравнения).
i определяет устойчивость системы и качество переходных процессов, i определяет только качество переходных процессов.
Диаграмма Вышнеградского
Влияние распределения
корней на характер переходного процесса
и на устойчивость хорошо иллюстрирует
диаграмма, построенная И.А. Вышнеградским
для нормированного характеристического
уравнения третьего порядка
.
О
На диаграмме показано также распределение корней для разграничительных линий. В точке b, в которой А1=А2=3, все три корня действительные и равные друг другу.
Частотные методы базируются на прямом и обратном преобразовании Фурье.
Если f(t) – функция периодическая, то для нее применимо:
Будем рассматривать:
Y(t)=h(t);
x(t)=1(t)
,
- вещественная характеристика.
______________________________________
Каждому полюсу i на комплексной плоскости соответствует определенная точка. Данные корни определяют на плоскости следующую замкнутую плоскость.
В
р1, р2, …, рп характеристического уравнения замкнутой системы на комплексной плоскости.
Наиболее общим корневым показателем качества является среднее геометрическое значение модулей корней
,
которое
легко вычисляется через крайние
коэффициенты характеристического
уравнения
.
0
определяет центр расположения всех
корней характеристического уравнения
и влияет на быстродействие системы.
Чем меньше показатель 0,
тем ближе «созвездие» корней к мнимой
оси и тем больше длительность переходного
процесса.
Пусть
:
Чем ближе
к мнимой оси, тем ближе САУ к границе
устойчивости. Поскольку
- где
- передаточный коэффициент разомкнутого
контура для астатических систем, а
- для статических систем.
2) Расстояние от мнимой оси до действительной части ближайшего к ней корня называется степенью устойчивости .
3)
Колебательные свойства системы
регулирования предопределяет k–ая
пара комплексных корней
,
для которой наибольшее отношение
или наибольший угол между действительной осью и лучами, соединяющими начало координат с этими корнями. В данном случае такой парой являются комплексные корни р2 и р3.
Отношение д мнимой части к действительной части доминирующей пары комплексных корней называют степенью колебательности.
В практических расчетах чаще используют корневой показатель колебательности
,
также
определяемый через доминирующую пару
комплексных корней. При выборе настроек
регуляторов стремятся получить значения
.
4) Абсолютное значение действительной части корня, наиболее удаленного от мнимой оси.