
- •Научные методы познания окружающего мира; роль эксперимента и теории в процессе познания природы; моделирование явлений и объектов природы.
- •Электрическая ёмкость: электроёмкость конденсатора; энергия электрического поля.
- •Задача на применение законов сохранения импульса.
- •Билет 2
- •Научные гипотезы; физические законы и теории, границы их применимости.
- •Электрический ток. Последовательное и параллельное соединения проводников. Электродвижущая сила (эдс). Закон Ома для полной электрической цепи.
- •3.Экспериментальное задание: «Измерение длины световой волны с помощью дифракционной решетки».
- •Механическое движение и его относительность; уравнения прямолинейного равноускоренного движения.
- •Электрический ток в газах: несамостоятельный разряд в газах; самостоятельный электрический разряд; виды самостоятельного разряда; плазма.
- •3.Задача на применение уравнения состояния идеального газа
- •Движение по окружности с постоянной по модулю скоростью; период и частота; центростремительное ускорение.
- •2.Электрический ток в растворах и расплавах электролитов: закон Фарадея; определение заряда одновалентного иона; технические применения электролиза.
- •Задача на применение газовых законов.
- •Первый закон Ньютона: инерциальная система отсчёта.
- •Экспериментальное задание: «Измерение влажности воздуха с помощью психрометра».
- •Второй закон Ньютона: понятие о массе и силе, принцип суперпозиции сил; формулировка второго закона Ньютона; классический принцип относительности.
- •Магнитное поле: понятие о магнитном поле; магнитная индукция; линии магнитной индукции, магнитный поток; движение заряженных частиц в однородном магнитном поле.
- •Экспериментальное задание: «Построение графика зависимости температуры от времени остывания воды».
- •Третий закон Ньютона: формулировка; характеристика сил действия и противодействия: модуль, направление, точка приложения, природа.
- •Закон электромагнитной индукция Фарадея; правило Ленца; явление самоиндукции; индуктивность; энергия магнитного поля.
- •Экспериментальное задание: «Исследование зависимости периода и частоты свободных колебаний математического маятника от длинны нити».
- •Колебательный контур. Свободные электромагнитные колебания: затухание свободных колебаний; период электромагнитных колебаний.
- •Экспериментальное задание: «Определение показателя преломления пластмассы».
- •1. Закон всемирного тяготения. Сила тяжести, вес и невесомость.
- •Автоколебания: автоколебательная система; автоколебательный генератор незатухающих электромагнитных колебаний.
- •Силы упругости: природа сил упругости; виды упругих деформаций; закон Гука.
- •3.Задача на применение закона радиоактивного распада
- •Силы трения: природа сил трения; коэффициент трения скольжения; закон сухого трения; трение покоя; учёт и использование трения в быту и технике.
- •Трансформатор: принцип трансформации переменного тока; устройство трансформатора; холостой ход; режим нагрузки; передача электрической энергии.
- •3.Экспериментальное задание: «Исследование последовательного соединения проводников».
- •Равновесие твёрдых тел: момент силы; условия равновесия твёрдого тела; устойчивость тел; виды равновесия; принцип минимума потенциальной энергии.
- •2.Электромагнитное поле. Открытие электромагнитных волн: гипотеза Максвелла; экспериментальное; опыты Герца.
- •Экспериментальное задание: «Измерение эдс и внутреннего сопротивления источника тока2.
- •Механическая работа. Мощность. Энергия: кинетическая энергия; потенциальная энергия тела в однородном поле тяготения и энергия упруго деформированного тела; закон сохранения энергии.
- •Задача на применение закона сохранения энергии.
- •Билет 14
- •.1.Закон Паскаля; закон Архимеда; условия плавания тел.
- •Свет как электромагнитная волна. Скорость света. Интерференция света: опыт Юнга; цвета тонких плёнок.
- •Задача на расчет работы и мощности тока.
- •2. Дифракция света: явление дифракции света; явления, наблюдаемые при пропускании света через отверстия малых размеров; дифракция на малом отверстии и от круглого экрана. Дифракционная решётка.
- •Задача на движение заряженной частицы в магнитном поле
- •Гипотеза Планка о квантах; фотоэффект; опыты а.Г.Столетова; уравнение Эйнштейна для фотоэффекта; фотон.
- •Задача на применение закона электромагнитной индукции
- •Законы отражения и преломления света; полное внутреннее отражение; линзы; формула тонкой линзы; оптические приборы.
- •Задача по теме «Вес движущегося тела».
- •Постулаты специальной теории относительности (сто). Полная энергия. Энергия покоя. Релятивистский импульс.
- •Задача на применение закона всемирного тяготения
- •Билет 19
- •Модель строения жидкостей. Насыщенные и ненасыщенные пары; зависимость давления насыщенного пара от температуры; кипение. Влажность воздуха; точка росы, гигрометр, психрометр.
- •Дисперсия и поглощение света; спектроскоп и спектрограф. Различные виды электромагнитных излучений и их практическое применение. Дисперсия
- •Задача по теме «Кинематика»
- •Билет 20
- •Опыт Резерфорда; ядерная модель атома; квантовые постулаты Бора; гипотеза де Бройля о волновых свойствах частиц; дифракция электронов; лазеры.
- •Экспериментальное задание: «Измерение модуля упругости резины».
- •Модели строения атомного ядра; ядерные силы; нуклонная модель ядра; энергия связи ядра; ядерные спектры; ядерные реакции.
- •1. Тепловые машины: основные части и принципы действия тепловых машин; коэффициент полезного действия тепловой машины и пути его повышения; проблемы энергетики и охрана окружающей среды.
- •2. Радиоактивность; радиоактивные излучения; закон радиоактивного распада.
- •Задача на расчёт параметров колебательного контура
- •Необратимость тепловых процессов; второй закон термодинамики и его статистическое истолкование.
- •3. Экспериментальное задание: «Измерение ускорения свободного падения с помощью математического маятника».
- •Солнечная система. Звёзды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звёзд.
- •Малые тела Солнечной системы.
- •2. Виды звезд.
- •3. Взрывы и эволюция звезд.
- •Задача на применение первого закона термодинамики.
- •Наша Галактика. Другие галактики. Пространственные масштабы наблюдаемой Вселенной. Применимость законов физики для объяснения природы космических объектов.
- •5. Будущее Вселенной.
- •Экспериментальное задание: «Исследование параллельного соединения проводников».
- •«Красное смещение» в спектрах галактик. Современные взгляды на строение и эволюцию Вселенной.
- •3. Задача по теме «Кинематика»
5. Будущее Вселенной.
Ученые смогли определить, когда было начало Вселенной. А можно ли предсказать, будет ли у нее конец, и если будет, то когда?
В соответствии с современными космологическими моделями для ответа на этот вопрос необходимо определить, какова средняя плотность материи во Вселенной. Если она меньше критического значения плотности, равного, согласно космологическим моделям, примерно 10~26 кг/м3, то Вселенная будет неограниченно расширяться, так как силы тяготения никогда не смогут остановить процесс расширения.
Это — модель «открытой Вселенной».
Если же средняя плотность материи во Вселенной больше указанного выше критического значения, то силы тяготения через какое-то время «возьмут верх», остановят расширение Вселенной, а затем заставят вещество сжиматься снова — и опять в точку. И, может быть, затем произойдет новый (или очередной!) Большой взрыв.
Такая модель называется моделью «замкнутой Вселенной».
Исходя из наблюдений, ученые оценивают плотность вещества во Вселенной в десять или даже в сто раз ниже критической, то есть наблюдения как будто свидетельствуют в пользу открытой Вселенной, которая будет неограниченно расширяться.
Экспериментальное задание: «Исследование параллельного соединения проводников».
Билет 26
Проводники в электрическом поле: электрическое поле внутри проводящего тела; электрическое поле заряженного проводящего шара; измерение разности потенциалов с помощью электрометра; диэлектрики в электрическом поле; поляризация диэлектриков.
ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ
Электростатическое поле – это .поле, образованное неподвижными электрическими зарядами. Свободные электроны - электроны, способные свободно перемещаться внутри проводника ( в основном в металлах) под действием эл. поля; Свободные электроны возникают при образовании металлов: электроны с внешних оболочек атомов утрачивают связи с ядрами и начинают принадлежать всему проводнику;
-
участвуют в тепловом движении и могут
свободно перемещаться по всему
проводнику.
Электростатическое
поле внутри проводника
-
внутри проводника электростатического
поля нет ( Е = 0 ), что справедливо для
заряженного проводника и для незаряженного
проводника, внесенного во внешнее
электростатическое поле.
Электрический
заряд проводников
-
весь статический заряд проводника
расположен на
его поверхности, внутри
проводника q = 0;
- справедливо для
заряженных и незаряженных проводников
в эл. поле.
Линии напряженности эл.
поля в любой точке поверхности
проводника перпендикулярны этой
поверхности.
ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ
Электрический диполь - молекула, в целом нейтральная, но центры распределения противоположных по знаку зарядов разнесены и рассматриваются, как совокупность двух точечных зарядов, равных по модулю и противоположных по знаку, находящихся внутри молекулы на некотором расстоянии друг от друга. Существуют 2 вида диэлектриков ( различаются строением молекул) : 1) полярные - молекулы, у которых центры положительного и отрицательного зарядов не совпадают ( спирты, вода и др.);
2) неполярные - атомы и молекулы, у которых центры распределения зарядов совпадают (инертные газы, кислород, водород, полиэтилен и др.).
ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ - смещение положительного и отрицательного зарядов в противоположные стороны, т.е.ориентация молекул.
Поляризация полярных диэлектриков Диэлектрик вне эл.поля - в результате теплового движения электрические диполи ориентированы беспорядочно на поверхности и внутри диэлектрика. q = 0 и Eвнутр = 0. Ориентация диполей - только частичная, т.к. мешает тепловое движение. На поверхности диэлектрика возникают связанные заряды, а внутри диэлектрика заряды диполей компенсируют друг друга. Поляризация неполярных диэлектриков - тоже поляризуются в эл. поле: положительные и отрицательные заряды молекул смещаются,
центры распределения зарядов перестают совпадать (как диполи), на поверхности диэлектрика возникает связанный заряд, а внутри эл. поле лишь ослабляется. Ослабление поля зависит от свойств диэлектрика.